Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 242(Pt 1): 124684, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37148951

RESUMO

To date, very limited work has been done on convenient and active control of insulin release. Herein, we report an electro-responsive insulin delivery system based on thiolated silk fibroin. The disulfide cross-linking points in TSF were reduced and broken to form sulfhydryl groups under electrification, which led to the increase of microneedle swelling degree and promoted insulin release. After power failure, the sulfhydryl group is oxidised to form disulfide bond crosslinking point again, resulting in the reduction of microneedle swelling degree and thus the reduction of release rate. The insulin loaded in the electro-responsive insulin delivery system showed good reversible electroresponsive release performance. The addition of graphene reduced the microneedle resistance and increased the drug release rate under current conditions. In vivo studies on type 1 diabetic mice show that electro-responsive insulin delivery system effectively controls the blood glucose before and after feeding by switching on and off the power supply, and this blood glucose control can be maintained within the safe range (100-200 mg/dL) for a long time (11h). Such electrically responsive delivery microneedles show potential for integration with glucose signal monitoring and are expected to build closed-loop insulin delivery systems.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Fibroínas , Camundongos , Animais , Insulina/química , Fibroínas/química , Glicemia , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos/métodos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Sistemas de Infusão de Insulina , Seda
2.
Pharmaceutics ; 13(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34959479

RESUMO

As a patient-friendly technology, drug-loaded microneedles can deliver drugs through the skin into the body. This system has broad application prospects and is receiving wide attention. Based on the knowledge acquired in this work, we successfully developed a melatonin-loaded microneedle prepared from proline/melatonin/silk fibroin. The engineered microneedles' morphological, physical, and chemical properties were characterized to investigate their structural transformation mechanism and transdermal drug-delivery capabilities. The results indicated that the crystal structure of silk fibroin in drug-loaded microneedles was mainly Silk I crystal structure, with a low dissolution rate and suitable swelling property. Melatonin-loaded microneedles showed high mechanical properties, and the breaking strength of a single needle was 1.2 N, which could easily be penetrated the skin. The drug release results in vitro revealed that the effective drug concentration was obtained quickly during the early delivery. The successful drug concentration was maintained through continuous release at the later stage. For in vivo experimentation, the Sprague Dawley (SD) rat model of insomnia was constructed. The outcome exhibited that the melatonin-loaded microneedle released the drug into the body through the skin and maintained a high blood concentration (over 5 ng/mL) for 4-6 h. The maximum blood concentration was above 10 ng/mL, and the peak time was 0.31 h. This system indicates that it achieved the purpose of mimicking physiological release and treating insomnia.

3.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281160

RESUMO

Silk fibroin (SF) has attracted much attention due to its high, tunable mechanical strength and excellent biocompatibility. Imparting the ability to respond to external stimuli can further enhance its scope of application. In order to imbue stimuli-responsive behavior in silk fibroin, we propose a new conjugated material, namely cationic SF (CSF) obtained by chemical modification of silk fibroin with ε-Poly-(L-lysine) (ε-PLL). This pH-responsive CSF hydrogel was prepared by enzymatic crosslinking using horseradish peroxidase and H2O2. Zeta potential measurements and SDS-PAGE gel electrophoresis show successful synthesis, with an increase in isoelectric point from 4.1 to 8.6. Fourier transform infrared (FTIR) and X-ray diffraction (XRD) results show that the modification does not affect the crystalline structure of SF. Most importantly, the synthesized CSF hydrogel has an excellent pH response. At 10 wt.% ε-PLL, a significant change in swelling with pH is observed. We further demonstrate that the hydrogel can be glucose-responsive by the addition of glucose oxidase (GOx). At high glucose concentration (400 mg/dL), the swelling of CSF/GOx hydrogel is as high as 345 ± 16%, while swelling in 200 mg/dL, 100 mg/dL and 0 mg/dL glucose solutions is 237 ± 12%, 163 ± 12% and 98 ± 15%, respectively. This shows the responsive swelling of CSF/GOx hydrogels to glucose, thus providing sufficient conditions for rapid drug release. Together with the versatility and biological properties of fibroin, such stimuli-responsive silk hydrogels have great potential in intelligent drug delivery, as soft matter substrates for enzymatic reactions and in other biomedical applications.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Fibroínas/química , Glucose/metabolismo , Hidrogéis/síntese química , Materiais Biocompatíveis/química , Liberação Controlada de Fármacos , Fibroínas/metabolismo , Glucose/química , Peroxidase do Rábano Silvestre/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Polilisina/química , Seda/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X
4.
ACS Biomater Sci Eng ; 7(8): 3594-3607, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34308644

RESUMO

Highly absorbent polymers have a wide range of applications in biomaterials, agriculture, physiological products of daily uses, and others. Silk fibroin, as a natural biomaterial with excellent biocompatibility and tunable mechanical properties, shows good prospects in the field of biomedicine applications. However, the dried fibroin hydrogel has very low absorbency. In this work, silk fibroin protein is used as the carrier, riboflavin as the photosensitizer, and accordingly, the hydrogel is prepared by free radical cross-linking under ultraviolet light. The fibroin in the hydrogel contains mainly the random coil structure. The covalent bond cross-linking hinders the crystallization of the silk fibroin, thereby an amorphous silk fibroin hydrogel is obtained. After drying, this xerogel can absorb water 90 times more than its own mass and assimilates a good amount of water within a minute. In vitro and in vivo rabbit ear hemostasis experiments show that this fabricated xerogel has good hemostatic properties. Therefore, this xerogel exhibits good promise for rapid hemostasis of wounds and absorbing other body exudates.


Assuntos
Fibroínas , Animais , Materiais Biocompatíveis , Hidrogéis , Polímeros , Coelhos
5.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923636

RESUMO

The crystalline structure of silk fibroin Silk I is generally considered to be a metastable structure; however, there is no definite conclusion under what circumstances this crystalline structure is stable or the crystal form will change. In this study, silk fibroin solution was prepared from B. Mori silkworm cocoons, and a combined method of freeze-crystallization and freeze-drying at different temperatures was used to obtain stable Silk I crystalline material and uncrystallized silk material, respectively. Different concentrations of methanol and ethanol were used to soak the two materials with different time periods to investigate the effect of immersion treatments on the crystalline structure of silk fibroin materials. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman scattering spectroscopy (Raman), Scanning electron microscope (SEM), and Thermogravimetric analysis (TGA) were used to characterize the structure of silk fibroin before and after the treatments. The results showed that, after immersion treatments, uncrystallized silk fibroin material with random coil structure was transformed into Silk II crystal structure, while the silk material with dominated Silk I crystal structure showed good long-term stability without obvious transition to Silk II crystal structure. α-chymotrypsin biodegradation study showed that the crystalline structure of silk fibroin Silk I materials is enzymatically degradable with a much lower rate compared to uncrystallized silk materials. The crystalline structure of Silk I materials demonstrate a good long-term stability, endurance to alcohol sterilization without structural changes, and can be applied to many emerging fields, such as biomedical materials, sustainable materials, and biosensors.


Assuntos
Fibroínas/química , Quimotripsina/metabolismo , Fibroínas/normas , Temperatura Alta , Desnaturação Proteica , Estabilidade Proteica , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...