Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi Pharm J ; 32(7): 102124, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38933713

RESUMO

Natural products (NPs) play an irreplaceable role in the intervention of various diseases and have been considered a critical source of drug development. Many new pharmacodynamic compounds with potential clinical applications have recently been derived from NPs. These compounds range from small molecules to polysaccharides, polypeptides, proteins, self-assembled nanoparticles, and extracellular vesicles. This review summarizes various active substances found in NPs. The investigation of active substances in NPs can potentiate new drug development and promote the in-depth comprehension of the mechanism of action of NPs that can be beneficial in the prevention and treatment of human diseases.

2.
World J Gastroenterol ; 29(1): 171-189, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36683716

RESUMO

BACKGROUND: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a severe threat to human health. Polygonum multiflorum (PM) has been proven to remedy mitochondria and relieve MAFLD, but the main pharmacodynamic ingredients for mitigating MAFLD remain unclear. AIM: To research the active ingredients of PM adjusting mitochondria to relieve high-fat diet (HFD)-induced MAFLD in rats. METHODS: Fat emulsion-induced L02 adipocyte model and HFD-induced MAFLD rat model were used to investigate the anti-MAFLD ability of PM and explore their action mechanisms. The adipocyte model was also applied to evaluate the activities of PM-derived constituents in liver mitochondria from HFD-fed rats (mitochondrial pharmacology). PM-derived constituents in liver mitochondria were confirmed by ultra-high-performance liquid chromatography/mass spectrometry (mitochondrial pharmacochemistry). The abilities of PM-derived monomer and monomer groups were evaluated by the adipocyte model and MAFLD mouse model, respectively. RESULTS: PM repaired mitochondrial ultrastructure and prevented oxidative stress and energy production disorder of liver mitochondria to mitigate fat emulsion-induced cellular steatosis and HFD-induced MAFLD. PM-derived constituents that entered the liver mitochondria inhibited oxidative stress damage and improved energy production against cellular steatosis. Eight chemicals were found in the liver mitochondria of PM-administrated rats. The anti-steatosis ability of one monomer and the anti-MAFLD activity of the monomer group were validated. CONCLUSION: PM restored mitochondrial structure and function and alleviated MAFLD, which may be associated with the remedy of oxidative stress and energy production. The identified eight chemicals may be the main bioactive ingredients in PM that adjusted mitochondria to prevent MAFLD. Thus, PM provides a new approach to prevent MAFLD-related mitochondrial dysfunction. Mitochondrial pharmacology and pharmacochemistry further showed efficient strategies for determining the bioactive ingredients of Chinese medicines that adjust mitochondria to prevent diseases.


Assuntos
Fallopia multiflora , Hepatopatia Gordurosa não Alcoólica , Humanos , Ratos , Camundongos , Animais , Emulsões/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo
3.
Biomed Pharmacother ; 156: 113849, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36252355

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD) is a chronic liver disease that currently lacks approved pharmacological treatment options. The mechanisms and active ingredients of Polygonum cuspidatum (PC) that regulate the mitochondria to relieve MAFLD have not been assessed. Thus, this study was designed to explore the bioactive components of PC extract in regulating mitochondria to alleviate high-fat diet-induced MAFLD using mitochondrial pharmacology and pharmacochemistry. Our results demonstrate that PC protected the mitochondrial ultrastructure and inhibited oxidative stress and energy metabolism disorder in the liver mitochondria. Furthermore, PC-derived components in the liver mitochondria attenuated oxidative stress and restored the energy metabolism of fat emulsion-induced steatosis in L02 cell. Sixteen compounds were identified in the liver-mitochondrial extracts of PC-treated rats. The antisteatotic effects of three identified monomers and anti-MAFLD ability of the monomer group were confirmed. Collectively, our data suggest that the extract of PC can alleviate lipid metabolism disorder in MAFLD by protecting the mitochondrial ultrastructure, reducing oxidative stress injury, and promoting energy metabolism. The sixteen identified compounds were potentially the main effective ingredients of PC in treating MAFLD. Thus, PC shows potential in treating MAFLD and related mitochondrial dysfunction. The proposed strategy to identify the ingredients of herbal medicines based on mitochondrial pharmacology and pharmacochemistry presents a new approach in exploring the pharmacodynamic components of herbal medicines that regulate mitochondria in preventing and treating diseases.


Assuntos
Fallopia japonica , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Fallopia japonica/química , Mitocôndrias , Estresse Oxidativo , Fígado , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...