Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 14: 833437, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35978951

RESUMO

Purpose: Currently, the underlying neurophysiological mechanism of acute tinnitus is still poorly understood. This study aimed to explore differences in brain functional connectivity (FC) within and between resting-state networks (RSNs) in acute tinnitus patients with hearing loss (ATHL). Furthermore, it also evaluated the correlations between FC alterations and clinical characteristics. Methods: Two matched groups of 40 patients and 40 healthy controls (HCs) were included. Independent component analysis (ICA) was employed to obtain RSNs and FC differences were calculated within RSNs. In addition, the relationships between networks were conducted using functional network connectivity (FNC) analysis. Finally, an analysis of correlation was used to evaluate the relationship between FNC abnormalities and clinical data. Results: Results of this study found that seven major RSNs including the auditory network (AN), cerebellum network (CN), default mode network (DMN), executive control network (ECN), sensorimotor network (SMN), ventral attention network (VAN), and visual network (VN) were extracted using the group ICA in both groups. Furthermore, it was noted that the ATHL group showed aberrant FC within the CN, ECN, and VN as compared with HCs. Moreover, different patterns of network interactions were observed between groups, including the SMN-ECN, SMN-CN, ECN-AN, DMN-VAN, and DMN-CN connections. The correlations between functional disconnection and clinical characteristics in ATHL were also found in this study. Conclusion: In conclusion, this study indicated widespread alterations of intra- and inter-network connectivity in ATHL, suggesting that multiple large-scale network dysfunctions and interactions are involved in the early stage. Furthermore, our findings may provide new perspectives to understand the neuropathophysiological mechanism of acute tinnitus.

2.
Brain Imaging Behav ; 16(1): 151-160, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34296381

RESUMO

PURPOSE: The present study combined resting-state functional connectivity (FC) and Granger causality analysis (GCA) to explore frontostriatal network dysfunction in unilateral acute tinnitus (AT) patients with hearing loss. METHODS: The participants included 42 AT patients and 43 healthy control (HC) subjects who underwent resting-state functional magnetic resonance imaging (fMRI) scans. Based on the seed regions in the frontostriatal network, FC and GCA were conducted between the AT patients and HC subjects. Correlation analyses were used to examine correlations among altered FC values, GCA values, and clinical features in AT patients. RESULTS: Compared with HCs, AT patients showed a general reduction in FC between the seed regions in the frontostriatal network and nonauditory areas, including the frontal cortices, midcingulate cortex (MCC), supramarginal gyrus, and postcentral gyrus (PoCG). Using the GCA algorithm, we detected abnormal effective connectivity (EC) in the inferior occipital gyrus, MCC, Cerebelum_Crus1, and PoCG. Furthermore, correlations between disrupted FC/EC and clinical characteristics, especially tinnitus distress-related characteristics, were found in AT patients. CONCLUSIONS: Our work demonstrated abnormal FC and EC between the frontostriatal network and several nonauditory regions in AT patients with hearing loss, suggesting that multiple large-scale network dysfunctions and interactions are involved in the perception of tinnitus. These findings not only enhance the current understanding of the frontostriatal network in tinnitus but also serve as a reminder of the importance of focusing on tinnitus at an early stage.


Assuntos
Perda Auditiva , Zumbido , Mapeamento Encefálico , Giro do Cíngulo , Perda Auditiva/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Zumbido/diagnóstico por imagem
3.
Front Genet ; 13: 1089647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699454

RESUMO

Chronic rhinosinusitis (CRS) has brought a huge socioeconomic burden. However, its mechanism is still elusive, which may involve genetic, environmental and some other factors. Epigenetic analyses have been conducted to explore the mechanisms underlying CRS. Here, we reviewed the fruits in the epigenetic studies on DNA methylation, histone modification, and non-coding RNA regulation. We concluded that the epigenetic research on CRS has made great breakthroughs, especially in the past 5 years and the field of microRNAs. "Epigenetic therapies" are expected to be designed to treat CRS in the future.

4.
Front Neurosci ; 13: 1010, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31607851

RESUMO

PURPOSE: The present study combined fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), and functional connectivity (FC) to explore brain functional abnormalities in acute tinnitus patients (AT) with hearing loss. METHODS: We recruited twenty-eight AT patients and 31 healthy controls (HCs) and ran resting-state functional magnetic resonance imaging (fMRI) scans. fALFF, ReHo, and FC were conducted and compared between AT patients and HCs. After that, we calculated correlation analyses among abnormal fALFF, ReHo, FC, and clinical data in AT patients. RESULTS: Compared with HCs, AT showed increased fALFF values in the right inferior temporal gyrus (ITG). In contrast, significantly decreased ReHo values were observed in the cerebellar vermis, the right calcarine cortex, the right precuneus, the right supramarginal gyrus (SMG), and the right middle frontal gyrus (MFG). Based on the differences in the fALFF and ReHo maps, the latter of which we defined as region-of-interest (ROI) for FC analysis, the right ITG exhibited increased connectivity with the right precentral gyrus. In addition, the right MFG demonstrated decreased connectivity with both the bilateral anterior cingulate cortex (ACC) and the left precentral gyrus. CONCLUSION: By combining ReHo, fALFF, and FC analyses, our work indicated that AT with hearing loss had abnormal intraregional neural activity and disrupted connectivity in several brain regions which mainly involving the non-auditory area, and these regions are major components of default mode network (DMN), attention network, visual network, and executive control network. These findings will help us enhance the understanding of the neuroimaging mechanism in tinnitus populations. Moreover, these abnormalities remind us that we should focus on the early stages of this hearing disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...