Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 177: 116859, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879892

RESUMO

Phellinus igniarius is an important medicinal and edible fungus with diverse biological activities. This study aimed to investigate the effects of aqueous extract from P. igniarius (API) on the treatment of hyperuricemia (HUA) and related kidney damage. The chemical constituents of API were determined. The therapeutic effects of API on HUA and renal injury were assessed in adenine/potassium oxonate (PO)-treated mice. The constituent analysis of API revealed a predominance of polysaccharides (33.4 %), followed by total flavonoids (9.1 %), and total triterpenoids (3.5 %). Compared to control, the adenine/PO treatment greatly elevated serum uric acid (UA) levels but this elevation was attenuated by API. In the liver, the expression and activity of xanthine oxidase (XOD) were increased by HUA which were diminished by API. Furthermore, API was found to enhance the expression of UA transporter ABCG2 in the kidney and intestine of HUA mice, suggesting elevating UA excretion. Additionally, API ameliorated HUA-induced renal injury, as indicated by reduced serum BUN/creatinine levels, decreased glomerular and tubular damage, and lowered fibrotic levels. Network pharmacology analysis predicted that P. igniarius may regulate mitochondrial function to improve HUA-related renal injury. This prediction was then substantialized by the API-induced upregulation of NAD+/NADH ratio, ATP level, SOD2 activity, and expression of SOD2/PCG-1α/PPARγ in the kidney of HUA mice. Our results demonstrate that API may effectively ameliorate HUA by reducing UA production in the liver and enhancing UA excretion in the kidney and intestine, and it might be a potential therapy to HUA-related renal injury.

2.
Micromachines (Basel) ; 14(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37763819

RESUMO

Miniaturized four-dimensional (4D) micro/nanorobots denote a forerunning technique associated with interdisciplinary applications, such as in embeddable labs-on-chip, metamaterials, tissue engineering, cell manipulation, and tiny robotics. With emerging smart interactive materials, static micro/nanoscale architectures have upgraded to the fourth dimension, evincing time-dependent shape/property mutation. Molecular-level 4D robotics promises complex sensing, self-adaption, transformation, and responsiveness to stimuli for highly valued functionalities. To precisely control 4D behaviors, current-laser-induced photochemical additive manufacturing, such as digital light projection, stereolithography, and two-photon polymerization, is pursuing high-freeform shape-reconfigurable capacities and high-resolution spatiotemporal programming strategies, which challenge multi-field sciences while offering new opportunities. Herein, this review summarizes the recent development of micro/nano 4D laser photochemical manufacturing, incorporating active materials and shape-programming strategies to provide an envisioning of these miniaturized 4D micro/nanorobots. A comparison with other chemical/physical fabricated micro/nanorobots further explains the advantages and potential usage of laser-synthesized micro/nanorobots.

3.
Environ Sci Technol ; 57(27): 10053-10061, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37377074

RESUMO

Globally, more than 6 million metric tons of agricultural plastic films are used to increase crop yields and reduce the use of water and herbicides, resulting in the contamination of soil and water by plastic debris and additives. However, knowledge of the occurrence and release of additives from agricultural films is limited. In this study, suspect screening with high-resolution mass spectrometry, one-dimensional Fickian diffusion models, and linear free energy relationships (LFERs) were used to determine the occurrence and mass transfer of various additives from agricultural plastic films. A total of 89 additives were tentatively identified in 40 films, and 62 of them were further validated and quantified. The aqueous concentrations of 26 released additives reached mg L-1 after a 28 day incubation at 25 °C. Diffusion models and LFERs demonstrated that the film-water partition coefficient and the diffusivity in the polymer, the two critical parameters controlling the mass transfer, could be predicted using Abraham descriptors. The findings of this study highlighted the need for future research on the environmental fate and risk assessment of previously neglected additives in agricultural plastic films and other similar products.


Assuntos
Plásticos , Água , Plásticos/análise , Agricultura , Polímeros , Solo
4.
Int J Bioprint ; 9(3): 678, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274002

RESUMO

Mimicking natural botanical/zoological systems has revolutionarily inspired four-dimensional (4D) hydrogel robotics, interactive actuators/machines, automatic biomedical devices, and self-adaptive photonics. The controllable high-freedom shape reconfiguration holds the key to satisfying the ever-increasing demands. However, miniaturized biocompatible 4D hydrogels remain rigorously stifled due to current approach/material limits. In this research, we spatiotemporally program micro/nano (µ/n) hydrogels through a heterojunction geometric strategy in femtosecond laser direct writing (fsLDW). Polyethylene incorporated N-isopropylacrylamide as programmable interactive materials here. Dynamic chiral torsion, site-specific mutation, anisotropic deformation, selective structural coloration of hydrogel nanowire, and spontaneous self-repairing as reusable µ/n robotics were identified. Hydrogel-materialized monolayer nanowires operate as the most fundamental block at nanometric accuracy to promise high freedom reconfiguration and high force-to-weight ratio/bending curvature under tight topological control. Taking use of this biomimetic fsLDW, we spatiotemporally constructed several in/out-plane self-driven hydrogel grippers, diverse 2D-to-3D transforming from the same monolayer shape, responsive photonic crystal, and self-clenched fists at µ/n scale. Predictably, the geometry-modulable hydrogels would open new access to massively-reproducible robotics, actuators/sensors for microenvironments, or lab-on-chip devices.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 290: 122277, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36592591

RESUMO

Pesticide residues threaten the ecological environment and human health. Therefore, developing high performance SERS substrate to achieve highly sensitive detection of pesticide residues is meaningful. In this study, based on the strategy of combining "hot spots" engineering and material hybridization, we construct a novel hybrid SERS substrate by depositing Ag nanoflowers (NFs) on ZnO nanorods (NRs). Benefiting from the synergistic effect of electromagnetic enhancement and charge transfer effect, the Ag NFs@ZnO NRs substrate exhibits a low detection limit (10-13 M) for crystal violet molecules. This SERS substrate has good uniformity with a relative standard deviation of 7.463 %. Besides, owning to the photocatalytic property of ZnO NRs, the hybrid substrate can degrade probe molecules after SERS detection and realize recyclability. As a demonstration, we employed our SERS substrate for the trace detection of pesticide residues on apple surface and in river water. This study provides a new idea for improving the SERS performance of hybrid substrates.

6.
iScience ; 25(12): 105403, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36419851

RESUMO

Our recent study has found that gut bacteria Enterococcus faecalis contributes to hypertension and upregulates lysophospholipase A1 (LYPLA1) in the renal medulla of rats. This work aimed to investigate the role of LYPLA1 in the development of E. faecalis-induced hypertension. Compared to control, E. faecalis treatment increased blood pressure (BP), serum angiotensin II, sodium reabsorption, and expression of αENaC and LYPLA1 in the renal medulla of mice, and these effects were attenuated by knockdown of LYPLA1. Moreover, the intrarenal lypla1 overexpression increased sodium reabsorption and BP. Further studies showed that LYPLA1 promoted the accumulation of renal glycerophosphocholine (GPC), which directly elevated the expression of αENaC and sodium reabsorption. In addition, enriched abundance of LYPLA1 in the renal medulla and urine was also observed in other hypertensive animals. Overall, our results demonstrate that LYPLA1 contributes to E. faecalis-induced hypertension by accumulating GPC and activating ENaC in the renal medulla.

7.
J Hypertens ; 40(8): 1577-1588, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35792095

RESUMO

OBJECTIVE: Farnesoid X Receptor (FXR) is highly expressed in renal tubules, activation of which attenuates renal injury by suppressing inflammation and fibrosis. However, whether renal FXR contributes to the regulation of blood pressure (BP) is poorly understood. This study aimed to investigate the anti-hypertensive effect of renal FXR on high-fructose-induced salt-sensitive hypertension and underlying mechanism. METHODS: Hypertension was induced in male C57BL/6 mice by 20% fructose in drinking water with 4% sodium chloride in diet (HFS) for 8 weeks. The effects of FXR on NO production were estimated in vitro and in vivo . RESULTS: Compared with control, HFS intake elevated BP, enhanced renal injury and reduced renal NO levels as well as FXR expression in the kidney of mice. In the mouse renal collecting duct cells mIMCD-K2, FXR agonists promoted NO production by enhancing the expression of neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS), whereas this effect was diminished by fxr knockdown. We further found that Dynamin 3 (DNM3), a binding protein with nNOS in the renal medulla, was inhibited by FXR and its deficiency elevated NO production in mIMCD-K2 cells. In HFS-fed mice, renal fxr overexpression significantly attenuated hypertension and renal fibrosis, regulated the expression of DNM3/nNOS/iNOS, and increased renal NO levels. CONCLUSION: Our results demonstrated that renal FXR prevents HFS-induced hypertension by inhibiting DNM3 to promote NO production. These findings provide insights into the role and potential mechanism of renal FXR for the treatment of hypertension.


Assuntos
Dinamina III , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Hipertensão , Animais , Dinamina III/metabolismo , Fibrose , Frutose/metabolismo , Frutose/toxicidade , Hipertensão/metabolismo , Rim , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxidos/metabolismo , Cloreto de Sódio , Cloreto de Sódio na Dieta/efeitos adversos , Cloreto de Sódio na Dieta/metabolismo
8.
Food Funct ; 13(13): 6987-6999, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35708145

RESUMO

Chlorogenic acid (CGA) is a natural compound with many important pharmacological effects including anti-hypertension. This study aimed to investigate the anti-hypertensive effect of CGA on high-fructose-induced salt-sensitive hypertension and the underlying mechanism. Hypertension was induced in male C57BL/6 mice by 20% fructose in drinking water plus 4% sodium chloride in the diet (HFS) for 8 weeks. CGA (50, 100 or 200 mg kg-1 d-1) was orally administered to HFS-treated mice. The blood pressure of mice was recorded via the tail cuff method. The structure of gut microbiota and profiles of bile acids (BAs) in the serum were determined. Here, we found that HFS-elevated systolic blood pressure was greatly attenuated by CGA. The microbiota analysis showed that CGA restructured the HFS-treated gut microbiota, and markedly enriched Klebsiella. Oral administration of a Klebsiella isolate, Klebsiella oxytoca, also exhibited an anti-hypertensive effect in HFS-fed mice. Furthermore, we found that CGA and CGA-enriched K. oxytoca enhanced the expression of colonic Farnesoid X Receptor (FXR), modulated BA metabolism and enriched some BAs including deoxycholic acid (DCA) in the serum of HFS-fed mice. Treatment with DCA improved phenylephrine-induced vasoconstriction in arterioles of mice and attenuated hypertension in HFS-fed mice, suggesting that DCA serves as a link between gut microbiota and blood pressure. Our results clearly demonstrate that CGA attenuates HFS-induced hypertension in mice by modulating gut microbiota and BA metabolism. These findings provide insights into the potential mechanism of CGA for the treatment of hypertension.


Assuntos
Microbioma Gastrointestinal , Animais , Anti-Hipertensivos/farmacologia , Ácidos e Sais Biliares/farmacologia , Ácido Clorogênico/farmacologia , Frutose/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cloreto de Sódio
9.
Analyst ; 147(7): 1257-1272, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35253817

RESUMO

Surface enhanced Raman scattering (SERS) is a powerful spectral analysis technique and has exhibited remarkable application prospects in various fields. The design and fabrication of high-performance SERS substrates is key to promoting the development of SERS technology. Apart from noble metal substrates, non-metal substrates based on semiconductor materials have received increasing attention in recent years owing to their unique physical, chemical, and optical properties. However, compared with noble metal substrates, most semiconductor substrates show weak Raman enhancement ability. Therefore, exploring effective strategies to improve the SERS sensitivity is an urgent task. Numerous reviews have outlined the research progress of semiconductor SERS substrates, which mainly focused on summarizing the material category of semiconductor substrates. However, reviews that systematically summarize the strategies for improving the SERS performance of semiconductor substrates are lacking. In this review, we comprehensively discuss the research on semiconductor SERS from the aspects of mechanism, materials, and modification. Firstly, the Raman enhancement mechanism of semiconductor substrates and the SERS-active materials are discussed. Then, we summarize several effective approaches to boost the SERS performance of semiconductor substrates. In conclusion, we propose some prospects for this field.

10.
Eur Radiol ; 32(8): 5134-5143, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35267090

RESUMO

OBJECTIVE: The definition of washout in gadoxetate disodium-enhanced MRI (Gd-EOB-MRI) is controversial. The current Liver Imaging Reporting and Data System (LI-RADS) defines washout only in the portal venous phase on Gd-EOB-MRI, leading to low diagnostic sensitivity for HCC. We performed a meta-analysis to compare the diagnostic performance of Gd-EOB-MRI using conventional (cWO) and modified (mWO) definitions of washout. METHODS: The PubMed and EMBASE databases were searched to identify studies published between January 1, 2010, and August 1, 2021, that compared the diagnostic performance of cWO and mWO for HCC. The mWOs added transition phase (TP) hypointensity (mWO-1), hepatobiliary phase (HBP) hypointensity (mWO-2), or both (mWO-3). The pooled sensitivity and specificity were calculated using a bivariate random-effects model. Study heterogeneity was explored by subgroup analysis and meta-regression analysis. RESULTS: Ten comparative studies with 2391 patients were included. Compared to cWO, the overall mWO yielded significantly higher sensitivity (71% vs. 81%, p = 0.00) and lower specificity (97% vs. 93%, p = 0.01) for diagnosing HCC. The area under the curve (AUC) was 0.90 and 0.94 for the cWO and mWO, respectively. Regarding the three types of mWOs, mWO-2 showed the highest sensitivity (85%) and specificity (96%) for diagnosing HCC. mWO-2 achieved the highest AUC (0.97), followed by mWO-1 (0.90), and mWO-3 (0.89). Average reviewer experience and scanner field strength were significantly associated with study heterogeneity (p < 0.05). CONCLUSIONS: Inclusion of TP and HBP hypointensity in the definition of washout improved the sensitivity with slightly lower specificity for diagnosing HCC in LI-RADS. KEY POINTS: • Compared to the conventional definition of washout, studies using a modified definition had higher sensitivity (71% vs. 81%) but lower specificity (97% vs. 93%) in LI-RADS for the diagnosis of HCC. • Hepatobiliary phase hypointensity may be a preferred alternative washout for HCC diagnosis with the highest area under the curve. • Studies with experienced reviewer or 3.0T MRI showed higher sensitivity and lower specificity for diagnosing HCC when using modified washout (p < 0.05).


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagem , Meios de Contraste/farmacologia , Gadolínio DTPA , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Sensibilidade e Especificidade
11.
ACS Appl Mater Interfaces ; 14(4): 5558-5566, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35041383

RESUMO

Molybdenum disulfide (MoS2) is a representative transition metal sulfide that is widely used in gas and biological detection, energy storage, and integrated electronic devices due to its unique optoelectrical and chemical characteristics. To advance toward the miniaturization and on-chip integration of functional devices, it is strategically important to develop a high-precision and cost-effective method for the synthesis and integration of MoS2 patterns and functional devices. Traditional methods require multiple steps and time-consuming processes such as material synthesis, transfer, and photolithography to fabricate MoS2 patterns at the desired region on the substrate, significantly increasing the difficulty of manufacturing micro/nanodevices. In this work, we propose a single-step femtosecond laser-induced photochemical method which can realize the fabrication of arbitrary two-dimensional edge-unsaturated MoS2 patterns with high efficiency in microscale. Based on this method, MoS2 can be synthesized at a rate of 150 µm/s, 2 orders of magnitude faster than existing laser-based thermal decomposition methods without sacrificing the resolution and quality. The morphology and roughness of the MoS2 pattern can be controlled by adjusting the laser parameters. Furthermore, the femtosecond laser direct writing (FLDW) method was used to fabricate microscale MoS2-based gas detectors that can detect a variety of toxic gases with high sensitivity up to 0.5 ppm at room temperature. This FLDW method is not only applicable to the fabrication of high-precision MoS2 patterns and integrated functional devices, it also provides an effective route for the development of other micro/nanodevices based on a broad range of transition metal sulfides and other functional materials.

12.
Sci Total Environ ; 808: 152074, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34863759

RESUMO

The occurrence and risks of pesticides and their transformation products in soil at the manufacturing sites are "known unknowns." In this study, pesticides and their transformation products were screened in soil at 6 pesticide manufacturing sites across China using liquid and gas chromatography coupled with quadrupole time-of-flight mass spectrometry. The screening strategy can correctly identify 75% of 209 pesticides spiked at 50 ng g-1. A total of 212 pesticides were identified; 23.1% of pesticides detected were above 200 ng g-1, and the maximum concentration was 1.5 × 105 ng g-1. The risk quotients of 20% pesticides were greater than 1, and the maximum risk quotient of imidacloprid reached 6.3 × 104. The most recent site showed a larger number of pesticides with higher diversity, whereas older sites were dominated by organochlorine insecticides. The extended screen identified 163 transformation products with concentrations up to 6.6 × 104 ng g-1. Half of the transformation products had higher concentrations than their parent compounds, and metabolic ratios up to 371 were observed. The results of this study validate the prevalence of pesticides and their transformation products in soil at pesticide manufacturing sites. The results also highlight the importance of comprehensive screening at industrial sites and call for improved management and regulation of pesticide manufacturing, particularly for in-service facilities.


Assuntos
Resíduos de Praguicidas , Praguicidas , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Resíduos de Praguicidas/análise , Praguicidas/análise , Solo
13.
Front Oncol ; 12: 1033478, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36873303

RESUMO

Purpose: To establish a hepatocellular carcinoma imaging database and structured imaging reports based on PACS, HIS, and repository. Methods: This study was approved by the Institutional Review Board. The steps of establishing the database are as follows: 1) According to the standards required for the intelligent diagnosis of HCC, it was attempted to design the corresponding functional modules after analyzing the requirements; 2) Based on client/server (C/S) mode, 3-tier architecture model was adopted. A user interface (UI) could receive data entered by users and show handled data. Business logic layer (BLL) could process the business logic of the data, and data access layer (DAL) could save the data in the database. The storage and management of HCC imaging data could be realized by the SQLSERVER database management software, and Delphi and VC++ programming languages were used. Results: The test results showed that the proposed database could swiftly obtain the pathological, clinical, and imaging data of HCC from the picture archiving and communication system (PACS) and hospital information system (HIS), and perform data storage and visualization of structured imaging reports. According to the HCC imaging data, liver imaging reporting and data system (LI-RADS) assessment, standardized staging, and intelligent imaging analysis were carried out on the high-risk population to establish a one-stop imaging evaluation platform for HCC, strongly supporting clinicians in the diagnosis and treatment of HCC. Conclusions: The establishment of a HCC imaging database can not only provide a huge amount of imaging data for the basic and clinical research on HCC, but also facilitate the scientific management and quantitative assessment of HCC. Besides, a HCC imaging database is advantageous for personalized treatment and follow-up of HCC patients.

14.
Nanoscale ; 13(26): 11497-11504, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34165120

RESUMO

Memristors are regarded as one of the key devices to break through the traditional Von Neumann computer architecture due to their capability of simulating the function of neural synapses. Among various memristive materials, two-dimensional (2D) materials are promising candidates to build advanced memristors with extremely high integration density and low power consumption. However, memristors based on 2D materials usually suffer from poor endurance and retention due to their vulnerability to material degradation during the formation/fusing processes of conductive filament channels within the switching media of 2D materials. Here, a new memristor architecture based on a WS2/MoS2 2D semiconducting heterojunction (metal/heterojunction/metal, MHM) is proposed, which is completely different from the conventional metal/insulator/metal (MIM) sandwich structure. Through the introduction of a type-II 2D heterojunction, a resistance switching mechanism based on band modulation rather than the conductive filaments can be realized to eliminate the material degradation during the set/reset processes. A prototype MHM memristor based on the WS2/MoS2 heterojunction is successfully developed with a large switching on/off ratio up to 104 and a clearly extended endurance over 120 switching cycles, showing the advantage of the 2D WS2/MoS2 heterojunction over the individual MoS2 or WS2 layers in memristive performance. The proposed method for the MHM-type 2D memristor has the potential to achieve a large-scale integrated memristor matrix with low power consumption and high integration density, which is promising for future artificial intelligence and brain-like computing systems.

15.
Micromachines (Basel) ; 13(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35056197

RESUMO

Rapid fabricating and harnessing stimuli-responsive behaviors of microscale bio-compatible hydrogels are of great interest to the emerging micro-mechanics, drug delivery, artificial scaffolds, nano-robotics, and lab chips. Herein, we demonstrate a novel femtosecond laser additive manufacturing process with smart materials for soft interactive hydrogel micro-machines. Bio-compatible hyaluronic acid methacryloyl was polymerized with hydrophilic diacrylate into an absorbent hydrogel matrix under a tight topological control through a 532 nm green femtosecond laser beam. The proposed hetero-scanning strategy modifies the hierarchical polymeric degrees inside the hydrogel matrix, leading to a controllable surface tension mismatch. Strikingly, these programmable stimuli-responsive matrices mechanized hydrogels into robotic applications at the micro/nanoscale (<300 × 300 × 100 µm3). Reverse high-freedom shape mutations of diversified microstructures were created from simple initial shapes and identified without evident fatigue. We further confirmed the biocompatibility, cell adhesion, and tunable mechanics of the as-prepared hydrogels. Benefiting from the high-efficiency two-photon polymerization (TPP), nanometer feature size (<200 nm), and flexible digitalized modeling technique, many more micro/nanoscale hydrogel robots or machines have become obtainable in respect of future interdisciplinary applications.

16.
J Chromatogr A ; 1626: 461347, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32797827

RESUMO

Phthalate diesters are a group of plasticizers extensively used in the manufacturing and processing of plastics. Phthalate monoesters are the primary degradation products of the diesters. Accumulation of endocrine disruptive diesters and monoesters in soil is of great concern because of the extensive use of plastic mulching and misdisposal of plastics. Accurate determination of their levels in soil is critical to assess the occurrence, exposure, and risks of phthalate diesters and monoesters. In this study, we aimed to develop a robust and environmentally friendly method for the simultaneous determination of phthalate diesters and monoesters in soil. Ultra-performance liquid chromatography coupled with electrospray tandem mass spectrometry was used for quantification, combined with accelerated solvent extraction and in-line cleanup for sample preparation. The method detection limits for the 14 diesters and 11 monoesters were in the range of 0.59 to 10.08 ng g-1 d.w. Acceptable recoveries (69%-131%) for these analytes were obtained when four deuterated analogs were used for internal calibration, and intra- and inter-day variations were less than 15%. This method was later successfully applied to five soil samples, and 8 diesters and 7 monoesters were detected with the maximum concentration up to 1142.2 ng g-1 d.w. The method developed in this study can be used for screening and accurate quantification of phthalate diesters and monoesters in soil and possibly in other environmental matrices.


Assuntos
Ácidos Ftálicos/análise , Plastificantes/análise , Solo/química , Calibragem , Cromatografia Líquida de Alta Pressão/normas , Disruptores Endócrinos/análise , Disruptores Endócrinos/normas , Ésteres/química , Limite de Detecção , Ácidos Ftálicos/química , Ácidos Ftálicos/normas , Plastificantes/normas , Espectrometria de Massas em Tandem/normas , Temperatura
17.
ACS Omega ; 5(11): 5921-5930, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32226872

RESUMO

The widespread use of stimuli-responsive hydrogels is closely related to their synthesis efficiency. However, the widely used thermal-responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogels usually require a time-consuming synthesis process to produce (more than 12 h) and exhibit a relatively slow response speed in the field of cryo-polymerization. In this study, a sequence of thawing polymerization after freezing polymerization by a two-step method of free radical polymerization for the efficient synthesis of PNIPAM hydrogels (merely 2 h) with an excellent comprehensive performance is demonstrated. Results show that the overall performance of the as-synthesized PNIPAM hydrogels is at the top level among reported works despite the significantly reduced preparation time. Moreover, after incorporating multi-walled carbon nanotubes (MWNTs), the PNIPAM hydrogels exhibit a rapid near-infrared (NIR) light-response and programmable shape-morphing capability. It is believed that such a viable and time-saving synthetic method for producing PNIPAM hydrogels of high performance will lay a solid foundation for drug delivery and smart actuators.

18.
Opt Lett ; 44(17): 4291-4294, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31465385

RESUMO

Two-photon polymerization (TPP) based on laser direct writing is currently one of the most prevailing 3D micro/nano fabrication techniques. Nanomaterials can be doped in resins and assembled by TPP for developing advanced 3D functional devices. However, there lacks an effective visualization tool to determine the distribution and orientation of the nanomaterials as-doped in the composite resins. Herein, we present a nondestructive, in situ, and rapid characterization method to determine the orientation and distribution of the nanomaterials within cured resins using polarized second-harmonic generation (p-SHG). The directional assembly of the ZnO nanowires within micro/nanostructures fabricated by TPP is, for the first time to the best of our knowledge, characterized by p-SHG optical microscopy with a fast imaging speed by two orders of magnitude higher than that of the Raman mapping technique. Our method opens a window for nondestructive, rapid, in situ, and polarization-resolved characterization of functional devices made by TPP micro/nanofabrication.

19.
Nanoscale ; 11(18): 9176-9184, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31038144

RESUMO

Electrically conductive polymers have emerged as functional materials for future electronics due to their high electrical conductivity, real-time responsiveness, easy film-formation ability and desirable stretchability. However, the previously developed conductive polymer electronics are still limited to macroscopic hydrogels or films without complicated designs of fine features. Herein, a carbon nanotube-doped hydrophilic photoresist was ultrafast laser processed as an absorbent 3D scaffold to fabricate nanostructured electrically conductive hydrogels (NECHs) for the first time. Taking advantage of the intermolecular forces, we in situ interpenetrated π-conjugated poly(3,4-ethylenedioxythiophene) into NECHs by self-assembly to combine fine features (resolution down to 500 nm, at least two-order accuracy improvement than that in the case of standard 3D-printed electronics) and achieve a high electrical conductivity (0.1-42.5 S m-1), device-level mechanical properties and desirable tolerance to humid/acid environments. Consequently, several reliable, nanostructured, metal-free electrical circuits, alcohol micro-sensors, interdigital capacitors, and loop inductors have been experimentally identified and characterized. The NECHs successfully break current limitations by making better use of the two photon hydrogelation and highly conductive polymer. Optical clarity, conductivity, and extensibility of the NECHs promise their applications in micro energy storage devices, epidermal electronics, nanorobotics and electrical circuit boards for challenging conditions.

20.
Opt Express ; 25(3): 2285-2298, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519076

RESUMO

Integration of phase manipulation and polarization multiplexing was introduced to self-mixing interferometry (SMI) for high-sensitive measurement. Light polarizations were used to increase measuring path number and predict manifold merits for potential applications. Laser source was studied as a microwave-photonic resonator optically-injected by double reflected lights on a two-feedback-factor analytical model. Independent external paths exploited magnesium-oxide doped lithium niobate crystals at perpendicular polarizations to transfer interferometric phases into amplitudes of harmonics. Theoretical resolutions reached angstrom level. By integrating two techniques, this SMI outperformed the conventional single-path SMIs by simultaneous dual-targets measurement on single laser tube with high sensitivity and low speckle noise. In experimental demonstration, by nonlinear filtering method, a custom-made phase-resolved algorithm real-time figured out instantaneous two-dimensional displacements with nanometer resolution. Experimental comparisons to lock-in technique and a commercial Ploytec-5000 laser Doppler velocity meter validated this two-path SMI in micron range without optical cross-talk. Moreover, accuracy subjected to slewing rates of crystals could be flexibly adjusted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...