Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 367: 122088, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39116765

RESUMO

Phosphogypsum (PG) cemented paste backfill (CPB) is a primary non-hazardous method for treating PG. However, using traditional binders like cement increases global carbon emissions and mining operational costs while complicating the reduction of fluoride leaching risks. This study introduces a novel PG-based CPB treatment method using steel slag (SS) and ground granulated blast furnace slag (GGBFS) as binders, calcium oxide as an exciter, with biochar serving as a fluoride-fixing agent. We investigated the effect of biochar addition on the hydration and solidification/stabilization (S/S) of fluoride in SS and GGBFS-PG-based materials (SSPC). The results indicated that the optimal strength and performance for fluoride S/S were achieved with a biochar addition of 0.2 wt%. Compared to the control group without biochar, the strength increased by 54.3%, and F leaching decreased by 39.4% after 28 days of curing for SSPC. The addition of 0.2 wt% biochar facilitated heterogeneous nucleation and acted as a microfiller, enhancing SSPC's properties. However, excessive biochar reduced the compactness of SSPC. Additionally, the distribution of fluoride was strongly correlated with P, Ca, Fe, and Al, suggesting that fluoride S/S is linked to the formation of stable hydration products like fluorapatite, fluorite, and complexes such as [AlF6]3- and [FeF6]3-. These findings offer a promising approach for the safe treatment of PG and the beneficial reuse of solid waste from SS and GGBFS.


Assuntos
Sulfato de Cálcio , Carvão Vegetal , Fluoretos , Resíduos Sólidos , Carvão Vegetal/química , Sulfato de Cálcio/química , Fluoretos/química , Fósforo/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-36232072

RESUMO

Open-pit unclassified cemented paste backfilling (OPUCPB) methods have not only addressed the disposal problems of tailings but also eliminated geological hazards of high and steep open pit slopes and created conditions for ecological restoration of the open pit in the future. In this paper, slope safety simulations, heavy metal leaching, groundwater monitoring, and pollutant diffusion predictions were examined to evaluate the slope safety pattern and environmental protection enabled by OPUCPB. The results showed that: (1) The safety factor of the open pit slope was proportional to the height of OPUCPB operation. Under the condition of seismic force and seepage field, the safety factor of slope B was increased from 1.188 to 1.574 by OPUCPB. (2) The toxic and harmful components in tailings were significantly stabilized by the OPUCPB. Under the conditions of acid leaching and water leaching, the quality of the leaching solution met the requirements of the class III limit of groundwater (GB/T14848-2017). (3) The monitoring results of groundwater quality around the open pit showed that the OPUCPB had no effect on groundwater, and the water quality met the requirements of the class III limit of groundwater (GB/T14848-2017). (4) Considering the diffusion prediction of pollutants and groundwater under extreme conditions, it was found that the pollution process is slow, and the shortest time required for pollutants to reach the standard limit is 232 d at a distance of 50 m from the leakage point. Therefore, the influence of OPUCPB can be controlled, and this method can achieve improved reclamation of open pits and safety treatment of tailings. It was worth popularizing and applying in mining enterprises.


Assuntos
Poluentes Ambientais , Água Subterrânea , Metais Pesados , Metais Pesados/análise , Mineração , Qualidade da Água
3.
Chemosphere ; 286(Pt 1): 131630, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34315071

RESUMO

Anionic polyacrylamide (APAM) has widely been employed in backfill mining to accelerate the sedimentation of fine tailings particles and increase the concentration of tailings slurry. However, APAM inevitably remains in thickened tailings, leading to a nonnegligible influence on the rheological, mechanical, and heavy metal leaching properties of tailings-based cemented paste backfill (CPB). In an effort to solve these issues, the influences of APAM on CPB properties were examined in the present study. Experimental tests such as rheology, uniaxial compressive strength (UCS), toxicity leaching, and microscopy were conducted. The results showed that the presence of APAM first significantly increased the yield stress and viscosity of CPB slurry. APAM slightly improved the early UCS of CPB curing for 7 days but hindered the UCS development of samples cured for 28 days. Moreover, the presence of APAM restrained the hydration reaction, reduced the amounts of hydrated products, increased pore size, and loosed the microstructure of the test samples. Finally, the addition of APAM effectively reduced the leaching of Ag and As, while incremented that of Cu and slightly affected the leaching of Ba. In sum, these findings look promising for the safe production and environmental protection of the mining industry.


Assuntos
Materiais de Construção , Metais Pesados , Resinas Acrílicas , Mineração , Reologia
4.
J Environ Manage ; 290: 112608, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33901826

RESUMO

Serious heavy metals pollution was characterized in the lead/zinc mine tailings dam and surrounding soils, as well as copper slag disposal sites. This study investigates the efficacy of modified granulated copper slag (MGCS) as a partial replacement of ordinary Portland cement (OPC) for lead/zinc mine tailings-based cemented paste backfill (CPB) application using Na2SO4 (CSN) and CaO (CSC) as alkali-activated materials. The effect of different scenarios was ascertained by unconfined compressive strength (UCS). Also, the correlated microstructural evolution and mineralogical phase generation were obtained by scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), and X-ray diffraction (XRD). The main findings proved that CSN was more effective in improving mechanical performance. Na2SO4 was found associated with C-S-H gel formation accompanied by a compact microstructure and better pore distribution with lower porosity. However, deposition of chloride compound was found in the surface layer of CSN samples, which could bring deterioration to the mechanical properties. Results above extend the knowledge of reusing MGCS as supplementary material to CPB, promoting the concept of a circular economy demand for both lead/zinc mine extraction and copper industries.


Assuntos
Cobre , Zinco , Materiais de Construção , Chumbo , Mineração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA