Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Insect Sci ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37969037

RESUMO

Sex pheromones are considered to play critical roles in partner communication of most parasitic Hymenoptera. However, the identification of sex pheromone components remains limited to a few families of parasitoid wasps. In this study, we functionally characterized a candidate sex pheromone component in Microplitis mediator (Hymenoptera: Braconidae), a solitary parasitoid of Noctuidae insects. We found that the body surface extract from female wasps could significantly stimulate courtship behavior of males. Gas chromatography-electroantennographic detection (GC-EAD) analysis revealed that a candidate semiochemical from extract triggered significant electrophysiological response of antennae of males. By performing gas chromatography-mass spectrometer (GC-MS) measurement, GC-EAD active compound was identified as n-octyl acrylate, a candidate sex pheromone component in female M. mediator. In electroantennogram (EAG) tests, antennae of male wasps showed significantly higher electrophysiological responses to n-octyl acrylate than those of females. Y-tube olfactometer assays indicated that male wasps significantly chose n-octyl acrylate compared with the control. Furthermore, male wasps showed a remarkable preference for n-octyl acrylate in a simulated field condition behavioral trial; simultaneously, n-octyl acrylate standard could also trigger significant courtship behavior in males. We propose that n-octyl acrylate, as a candidate vital sex pheromone component, could be utilized to design behavioral regulators of M. mediator to implement the protection and utilization of natural enemies.

2.
Food Res Int ; 171: 113069, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37330827

RESUMO

Bee pollen (BP) and royal jelly (RJ) have shown therapeutic effects against colitis, but the functional components contained therein remain elusive. Here, we used an integrated microbiomic-metabolomic strategy to clarify the mechanism by which bee pollen lipid extracts (BPL) and royal jelly lipid extracts (RJL) ameliorated dextran sulfate sodium (DSS)-induced colitis in mice. Lipidomic results showed that levels of ceramide (Cer), lysophosphatidylcholine (LPC), phosphatidylcholine (PC), and phosphatidylethanolamine (PE) were significantly higher in BPL than in RJL. The anti-inflammatory efficacy of BPL surpassed that of RJL, although both BPL and RJL could attenuate DSS-induced colitis through several mechanisms: reducing the disease activity index (DAI); decreasing histopathological damage; inhibiting the expression of genes encoding proinflammatory cytokines; improving intestinal microbial community structure, and modulating host metabolism. These findings demonstrated that BPL and RJL have great potential as functional ingredients for the production of dietary supplements to prevent early colitis.


Assuntos
Colite , Camundongos , Abelhas , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Ácidos Graxos/análise , Intestinos/patologia , Pólen/química
3.
Foods ; 11(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36360070

RESUMO

Bee pollen as a nutrient-rich functional food has been considered for use as an adjuvant for chronic disease therapy. However, bee pollen can trigger food-borne allergies, causing a great concern to food safety. Our previous study demonstrated that the combined use of cellulase, pectinase and papain can hydrolyze allergens into peptides and amino acids, resulting in reduced allergenicity of bee pollen based on in vitro assays. Herein, we aimed to further explore the mechanisms behind allergenicity alleviation of enzyme-treated bee pollen through a BALB/c mouse model. Results showed that the enzyme-treated bee pollen could mitigate mice scratching frequency, ameliorate histopathological injury, decrease serum IgE level, and regulate bioamine production. Moreover, enzyme-treated bee pollen can modulate metabolic pathways and gut microbiota composition in mice, further supporting the alleviatory allergenicity of enzyme-treated bee pollen. The findings could provide a foundation for further development and utilization of hypoallergenic bee pollen products.

4.
Food Res Int ; 158: 111572, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35840258

RESUMO

Bee pollen as a plant-derived food is consumed as nutritional/functional supplements by humans. But it might confer foodborne allergenicity in susceptible populations, limiting its extensive application. In this study, five potential allergens including profilin, cystatin, prolamin, expansin, and alcohol dehydrogenase in bee pollen derived from Brassica campestris (BP-Bc), were identified through mass spectrometry-based proteomic analysis. Moreover, different types of enzymes (cellulases, pectases, and papains) serve biological roles in pollen wall breaking and expansion, but also promote allergen release and degradation. Proteomic analysis showed that profilin, cystatin, and alcohol dehydrogenase were significantly reduced in BP-Bc following joint treatment with three enzymes. Metabolomic characterization of potential enzymatic hydrolysates of these significantly-decreased allergens was performed, which showed nine major oligopeptides and six amino acids at significantly higher levels in the enzyme-treated BP-Bc. These findings clarified the culprit responsible for bee pollen allergy and the mechanism of enzymatic desensitization for its further development.


Assuntos
Alérgenos , Hipersensibilidade Alimentar , Álcool Desidrogenase , Alérgenos/química , Animais , Abelhas , Hipersensibilidade Alimentar/metabolismo , Metabolômica/métodos , Pólen/química , Profilinas/química , Proteômica/métodos
5.
Front Nutr ; 9: 822033, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35155540

RESUMO

Bee pollen is consumed for its nutritional and pharmacological benefits, but it also contains hazardous allergens which have not been identified. Here, we identified two potential allergens, glutaredoxin and oleosin-B2, in Brassica napus bee pollen using mass spectrometry-based proteomics analyses, and used bioinformatics to predict their antigenic epitopes. Comparison of fermented (by Saccharomyces cerevisiae) and unfermented bee pollen samples indicated that glutaredoxin and oleosin-B2 contents were significantly decreased following fermentation, while the contents of their major constituent oligopeptides and amino acids were significantly increased based on metabolomics analyses. Immunoblot analysis indicated that the IgE-binding affinity with extracted bee pollen proteins was also significantly decreased after fermentation, suggesting a reduction in the allergenicity of fermented bee pollen. Furthermore, fermentation apparently promoted the biosynthesis of L-valine, L-isoleucine, L-tryptophan, and L-phenylalanine, as well as their precursors or intermediates. Thus, fermentation could potentially alleviate allergenicity, while also positively affecting nutritional properties of B. napus bee pollen. Our findings might provide a scientific foundation for improving the safety of bee pollen products to facilitate its wider application.

6.
Nanoscale Res Lett ; 8(1): 296, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23799897

RESUMO

An unusual kind of transparent and high-efficiency organic silver conductive ink (OSC ink) was synthesized with silver acetate as silver carrier, ethanolamine as additive, and different kinds of aldehyde-based materials as reduction agents and was characterized by using a thermogravimetric analyzer, X-ray diffraction, a scanning electron microscope, and a four-point probe. The results show that different reduction agents all have an important influence on the conductive properties of the ink through a series of complex chemical reactions, and especially when formic acid or dimethylformamide was used as the reduction agent and sintered at 120°C for 30 s, the resistivity can be lowered to 6 to 9 µΩ·cm. Furthermore, formula mechanism, conductive properties, temperature, and dynamic fatigue properties were investigated systematically, and the feasibility of the OSC ink was also verified through the preparation of an antenna pattern.

7.
Nanoscale Res Lett ; 8(1): 147, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23537333

RESUMO

An unusual strategy was designed to fabricate conductive patterns with high reproducibility for flexible electronics by drop or fit-to-flow method. Silver nanowire (SNW) ink with surface tension of 36.9 mN/m and viscosity of 13.8 mPa s at 20°C was prepared and characterized using a field emission transmission electron microscope, X-ray diffractometer, thermogravimetric analyzer, scanning electron microscope, and four-point probe. Polydimethylsiloxane (PDMS) pattern as template was fabricated by spin coating (500 rpm), baking at 80°C for 3 h, and laser cutting. The prepared SNW ink can flow along the trench of the PDMS pattern spontaneously, especially after plasma treatment with oxygen, and show a low resistivity of 12.9 µΩ cm after sintering at 125°C for 30 min. In addition, an antenna pattern was also prepared to prove the feasibility of the approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA