Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 145: 105399, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35381454

RESUMO

Neonatal seizure detection algorithms (SDA) are approaching the benchmark of human expert annotation. Measures of algorithm generalizability and non-inferiority as well as measures of clinical efficacy are needed to assess the full scope of neonatal SDA performance. We validated our neonatal SDA on an independent data set of 28 neonates. Generalizability was tested by comparing the performance of the original training set (cross-validation) to its performance on the validation set. Non-inferiority was tested by assessing inter-observer agreement between combinations of SDA and two human expert annotations. Clinical efficacy was tested by comparing how the SDA and human experts quantified seizure burden and identified clinically significant periods of seizure activity in the EEG. Algorithm performance was consistent between training and validation sets with no significant worsening in AUC (p > 0.05, n = 28). SDA output was inferior to the annotation of the human expert, however, re-training with an increased diversity of data resulted in non-inferior performance (Δκ = 0.077, 95% CI: -0.002-0.232, n = 18). The SDA assessment of seizure burden had an accuracy ranging from 89 to 93%, and 87% for identifying periods of clinical interest. The proposed SDA is approaching human equivalence and provides a clinically relevant interpretation of the EEG.


Assuntos
Epilepsia , Doenças do Recém-Nascido , Algoritmos , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Humanos , Recém-Nascido , Doenças do Recém-Nascido/diagnóstico , Convulsões/diagnóstico , Máquina de Vetores de Suporte , Resultado do Tratamento
2.
Int J Neural Syst ; 29(4): 1850030, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30086662

RESUMO

The aim of this study was to develop methods for detecting the nonstationary periodic characteristics of neonatal electroencephalographic (EEG) seizures by adapting estimates of the correlation both in the time (spike correlation; SC) and time-frequency domain (time-frequency correlation; TFC). These measures were incorporated into a seizure detection algorithm (SDA) based on a support vector machine to detect periods of seizure and nonseizure. The performance of these nonstationary correlation measures was evaluated using EEG recordings from 79 term neonates annotated by three human experts. The proposed measures were highly discriminative for seizure detection (median AUCSC : 0.933 IQR: 0.821-0.975, median AUCTFC : 0.883 IQR: 0.707-0.931). The resultant SDA applied to multi-channel recordings had a median AUC of 0.988 (IQR: 0.931-0.998) when compared to consensus annotations, outperformed two state-of-the-art SDAs (p < 0.001) and was noninferior to the human expert for 73/79 of neonates.


Assuntos
Algoritmos , Eletroencefalografia/normas , Convulsões/diagnóstico , Máquina de Vetores de Suporte/normas , Eletroencefalografia/métodos , Humanos , Recém-Nascido , Convulsões/fisiopatologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...