Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(20): 4742-4747, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37184362

RESUMO

Two strategies for improving solar energy efficiencies, triplet fusion and singlet fission, rely on the details of triplet-triplet interactions. In triplet fusion, there are several steps, each of which is a possible loss mechanism. In solution, the parameters describing triplet fusion collisions are difficult to inspect. Here we show that these parameters can be determined by examining the magnetic field dependence of triplet fusion upconversion. We show that there is a reduction of the magnetic field effect for perylene triplet fusion as the system moves from the quadratic to linear annihilation regimes with an increase in laser power. Our data are modeled with a small set of parameters that characterize the triplet fusion dynamics. These parameters are cross-validated with molecular dynamics simulations. This approach can be applied to both solution and solid state materials, providing a tool for screening potential annihilators for photon upconversion.

2.
Phys Chem Chem Phys ; 25(9): 6817-6829, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36790866

RESUMO

Singlet fission (SF) holds the promise to circumvent the photovoltaic efficiency limit to reach a power-conversion efficiency above 34%. SF of TIPS-pentacene (TIPS-Pn) has been investigated but its mechanism is yet to be well elucidated. Recently, we developed a nanoparticle (NP) system, in which doping of TIPS-Pn in a host matrix yields a range of average intermolecular distances, d, to study the dependence of SF in TIPS-Pn on d. At large d values, where the bimolecular SF process should be unfavourable, a relatively high SF quantum yield (ΦSF) is still observed, which implies a deviation from a random distribution of TIPS-Pn throughout the NP. Here, using polarisation-sensitive femtosecond time-resolved spectroscopy and Monte Carlo simulations of exciton migration and SF, we quantify the level of clustering of TIPS-Pn in the host matrix, which is responsible for the higher than expected ΦSF. The experimental data indicate a preservation of polarisation correlation by SF, which is uncommon because energy transfer in amorphous materials tends to result in depolarisation. We show that the preservation of polarisation correlation is due to SF upon exciton migration. Although exciton migration decorrelates polarisation, SF acts to remove decorrelated excitons to give an overall preservation of polarisation correlation.

3.
Phys Chem Chem Phys ; 25(6): 4743-4753, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36691831

RESUMO

Photosynthesis has been shown to be a highly efficient process for energy transfer in plants and bacteria. Like natural photosynthetic systems, the artificial light harvesting complex (LHC) BODIPY pillar[5]arene exhibits Förster resonance energy transfer (FRET). However, extensive characterisation of the BODIPY pillar[5]arene LHC to determine its suitability as an artificial LHC has yet to occur. In this paper we experimentally and computationally investigate the photophysical properties of the LHC by comparing the light absorption of the BODIPY LHC to individual BODIPY chromophores. Our results show evidence for quantum coherence, with oscillation frequencies of 100 cm-1 and 600 cm-1, which are attributable to vibronic, or exciton-phonon type coupling. Computational analysis suggests strong couplings of the molecular orbitals of the LHC resulting from the stacking of neighbouring BODIPY chromophore units. Interestingly, we find a 40% reduction in the absorbance of light for the BODIPY LHC compared to the individual chromophores which we attribute to electronic interactions between the conjugated π-systems of the BODIPY chromophores and the pillar[5]arene backbone.

4.
J Chem Phys ; 157(8): 084312, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36050006

RESUMO

Singlet fission (SF), a process that produces two triplet excitons from one singlet exciton, has attracted recent interest for its potential to circumvent the detailed-balance efficiency limit of single-junction solar cells. For the potential of SF to be fully realized, accurate assignment and quantification of SF is necessary. Intersystem crossing (ISC) is another process of singlet to triplet conversion that is important to distinguish from SF to avoid either over- or under-estimation of SF triplet production. Here, we quantify an upper bound on the rate of ISC in two commonly studied SF chromophores, TIPS-pentacene and TIPS-tetracene, by using transient absorption spectroscopy of solutions of varying concentrations in toluene. We show that SF in solutions of these acenes has previously been misidentified as ISC, and vice versa. By determining a bimolecular SF rate constant in concentrated solutions in which SF dominates over ISC, we distinguish triplet formation due to SF from triplet formation due to ISC and show that the characteristic time scale of ISC must be longer than 325 ns in TIPS-pentacene, while it must be longer than 118 ns in TIPS-tetracene. We additionally note that no excimer formation is observed in the relatively dilute (up to 8 mM) solutions studied here, indicating that previous excimer formation observed at much higher concentrations may be partially due to aggregate formation. This work highlights that an accurate quantification of ISC is crucial as it leads to accurate determination of SF rate constants and yields.


Assuntos
Naftacenos , Naftacenos/química
5.
J Chem Phys ; 155(1): 014302, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34241376

RESUMO

TIPS-pentacene is a small-molecule organic semiconductor that is widely used in optoelectronic devices. It has been studied intensely owing to its ability to undergo singlet fission. In this study, we aim to develop further understanding of the coupling between the electronic and nuclear degrees of freedom of TIPS-pentacene (TIPS-Pn). We measured and analyzed the 2D electronic spectra of TIPS-Pn in solutions. Using center line slope (CLS) analysis, we characterized the frequency-fluctuation correlation function of the 0-0 vibronic transition. Strong oscillations in the CLS values were observed for up to 5 ps with a frequency of 264 cm-1, which are attributable to a large vibronic coupling with the TIPS-Pn ring-breathing vibrational mode. In addition, detailed analysis of the CLS values allowed us to retrieve two spectral diffusion lifetimes, which are attributed to the inertial and diffusive dynamics of solvent molecules. Amplitude beating analysis also uncovered couplings with another vibrational mode at 1173 cm-1. The experimental results can be described using the displaced harmonic oscillator model. By comparing the CLS values of the simulated data with the experimental CLS values, we estimated a Huang-Rhys factor of 0.1 for the ring-breathing vibrational mode. The results demonstrated how CLS analysis can be a useful method for characterizing the strength of vibronic coupling.

6.
J Phys Chem A ; 124(5): 1053-1061, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31931560

RESUMO

In two-dimensional electronic spectroscopy (2DES), precise control of the arrival time of ultrashort laser pulses is critical to correlating the molecular states that are accessed in the experiment. In this work, we demonstrate a 2D electronic spectrometer design with an interferometric phase stability of ∼λ/250 at 600 nm. First, we present a new method for controlling pulse delay times based on transmission through pairs of optical flats rotated perpendicular to the beam propagation direction. Second, the calibration methods required to achieve adequate timing precision are also reported. Compared to existing designs using translating wedges, the rotating optical flats can achieve equivalent optical delay with a shorter path length in glass, reducing errors due to spectral dispersion of the broadband laser pulses used in 2DES. Our approach presents a simple, low-cost technique for multidimensional optical spectroscopy that is capable of resolving complex light-induced dynamics.

7.
Nat Chem ; 10(3): 305-310, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29461531

RESUMO

Singlet fission is a process whereby two triplet excitons can be produced from one photon, potentially increasing the efficiency of photovoltaic devices. Endothermic singlet fission is desired for a maximum energy-conversion efficiency, and such systems have been considered to form an excimer-like state with multiexcitonic character prior to the appearance of triplets. However, the role of the excimer as an intermediate has, until now, been unclear. Here we show, using 5,12-bis((triisopropylsilyl)ethynyl)tetracene in solution as a prototypical example, that, rather than acting as an intermediate, the excimer serves to trap excited states to the detriment of singlet-fission yield. We clearly demonstrate that singlet fission and its conjugate process, triplet-triplet annihilation, occur at a longer intermolecular distance than an excimer intermediate would impute. These results establish that an endothermic singlet-fission material must be designed to avoid excimer formation, thus allowing singlet fission to reach its full potential in enhancing photovoltaic energy conversion.

8.
Nanoscale ; 9(43): 17133-17142, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29087426

RESUMO

The carrier dynamics of lead sulphide quantum dot (PbS QD) drop cast films and closely packed ordered Langmuir-Blodgett films are studied with ultra-fast femtosecond transient absorption spectroscopy. The photo-induced carrier temperature is extracted from transient absorption spectra and monitored as a function of time delay. The cooling dynamics of carriers in PbS QDs suggest a reduction of the carrier energy loss rate at longer time delays through the retardation of the longitudinal optical (LO) phonon decay due to partial heating of acoustic phonon modes. A slowed hot carrier cooling time up to 116 ps is observed in the drop cast film. A faster cooling rate was also observed in the highly compact Langmuir-Blodgett film due to the enhanced carrier-LO phonon coupling strength arising from the Coulombic interaction in neighboring QDs, which is verified by temperature dependent steady state PL measurements.

9.
J Phys Chem Lett ; 8(13): 2806-2811, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28590132

RESUMO

The excited states of conjugated polymers play a central role in their applications in organic solar photovoltaics. The delocalized excited states of conjugated polymers are short-lived (τ < 40 fs) but are imperative in the photovoltaic properties of these materials. Photoexcitation of poly(3-hexylthiophene) (P3HT) induces an excited-state absorption band, but the transitions that are involved are not well understood. In this work, calculations have been performed on P3HT analogues using nonlinear response time-dependent density functional theory to show that an increase in the oligomer length correlates with the dominance of the S1 → S3 transition. Furthermore, the predicted transition energy shows an excellent agreement with experiment. The calculations also yielded results on intramolecular charge transfer in P3HT due to the S1 → S3 transition, providing insight into the mechanism of exciton dissociation to form charge carriers.

10.
J Phys Chem Lett ; 5(6): 1040-7, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-26270985

RESUMO

The dynamics of high-energy excitons of poly(3-hexylthiophene) (P3HT) are shown to consist of torsional relaxation and exciton dissociation to form free carriers. In this work, we use pump-push-probe femtosecond transient absorption spectroscopy to study the highly excited states of P3HT in solution. P3HT excitons are generated using a pump pulse (400 nm) and allowed to relax to the lowest-lying excited state before re-excitation using a push pulse (900 or 1200 nm), producing high-energy excitons that decay back to the original excited state with both subpicosecond (0.16 ps) and picosecond (2.4 ps) time constants. These dynamics are consistent with P3HT torsional relaxation, with the 0.16 ps time constant assigned to ultrafast inertial torsional relaxation. Additionally, the signal exhibits an incomplete recovery, indicating dissociation of high-energy excitons to form charge carriers due to excitation by the push pulse. Our analysis indicates that charge carriers are formed with a yield of 11%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...