Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22271399

RESUMO

BackgroundIn October 2020, the National Cancer Institute (NCI) Serological Sciences Network (SeroNet) was established to study the immune response to COVID-19, and "to develop, validate, improve, and implement serological testing and associated technologies." SeroNet is comprised of 25 participating research institutions partnering with the Frederick National Laboratory for Cancer Research (FNLCR) and the SeroNet Coordinating Center. Since its inception, SeroNet has supported collaborative development and sharing of COVID-19 serological assay procedures and has set forth plans for assay harmonization. MethodsTo facilitate collaboration and procedure sharing, a detailed survey was sent to collate comprehensive assay details and performance metrics on COVID-19 serological assays within SeroNet. In addition, FNLCR established a protocol to calibrate SeroNet serological assays to reference standards, such as the U.S. SARS-CoV-2 serology standard reference material and First WHO International Standard (IS) for anti-SARS-CoV-2 immunoglobulin (20/136), to facilitate harmonization of assay reporting units and cross-comparison of study data. ResultsSeroNet institutions reported development of a total of 27 ELISA methods, 13 multiplex assays, 9 neutralization assays, and use of 12 different commercial serological methods. FNLCR developed a standardized protocol for SeroNet institutions to calibrate these diverse serological assays to reference standards. ConclusionsSeroNet institutions have established a diverse array of COVID-19 serological assays to study the immune response to SARS-CoV-2 virus and vaccines. Calibration of SeroNet serological assays to harmonize results reporting will facilitate future pooled data analyses and study cross-comparisons.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-259838

RESUMO

The SARS-CoV-2 outbreak and subsequent COVID-19 pandemic have highlighted the urgent need to determine what cells are susceptible to infection and for assays to detect and quantify SARS-CoV-2. Furthermore, the ongoing efforts for vaccine development have necessitated the development of rapid, high-throughput methods of quantifying infectious SARS-CoV-2, as well as the ability to screen human polyclonal sera samples for neutralizing antibodies against SARS-CoV-2. To this end, our lab has adapted focus forming assays for SARS-CoV-2 using Vero CCL-81 cells, referred to in this text as Vero WHO. Using the focus forming assay as the basis for screening cell susceptibility and to develop a focus reduction neutralization test. We have shown that this assay is a sensitive tool for determining SARS-CoV-2 neutralizing antibody titer in human, non-human primate, and mouse polyclonal sera following SARS-CoV-2 exposure. Additionally, we describe the viral growth kinetics of SARS-CoV-2 in a variety of different immortalized cell lines and demonstrate via human ACE2 and viral spike protein expression that these cell lines can support viral entry and replication.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-241877

RESUMO

The novel human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic resulting in nearly 20 million infections across the globe, as of August 2020. Critical to the rapid evaluation of vaccines and antivirals is the development of tractable animal models of infection. The use of common laboratory strains of mice to this end is hindered by significant divergence of the angiotensin-converting enzyme 2 (ACE2), which is the receptor required for entry of SARS-CoV-2. In the current study, we designed and utilized an mRNA-based transfection system to induce expression of the hACE2 receptor in order to confer entry of SARS-CoV-2 in otherwise non-permissive cells. By employing this expression system in an in vivo setting, we were able to interrogate the adaptive immune response to SARS-CoV-2 in type 1 interferon receptor deficient mice. In doing so, we showed that the T cell response to SARS-CoV-2 is enhanced when hACE2 is expressed during infection. Moreover, we demonstrated that these responses are preserved in memory and are boosted upon secondary infection. Interestingly, we did not observe an enhancement of SARS-CoV-2 specific antibody responses with hACE2 induction. Importantly, using this system, we functionally identified the CD4+ and CD8+ peptide epitopes targeted during SARS-CoV-2 infection in H2b restricted mice. Antigen-specific CD8+ T cells in mice of this MHC haplotype primarily target peptides of the spike and membrane proteins, while the antigen-specific CD4+ T cells target peptides of the nucleocapsid, membrane, and spike proteins. The functional identification of these T cell epitopes will be critical for evaluation of vaccine efficacy in murine models of SARS-CoV-2. The use of this tractable expression system has the potential to be used in other instances of emerging infections in which the rapid development of an animal model is hindered by a lack of host susceptibility factors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...