Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 141: 106846, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37713948

RESUMO

Herein, a novel series of 4,5-diphenyl-imidazol-α-aminophosphonate hybrids 4a-m was designed, synthesized, and evaluated as new anti-diabetic agents. These compounds were evaluated against two important target enzymes in the diabetes treatment: α-glucosidase and α-amylase. These new compounds were synthesized in three steps and characterized by different spectroscopic techniques. The in vitro evaluations demonstrated that all the synthesized compounds 4a-m were more potent that standard inhibitor acarbose against studied enzymes. Among these compound, the most potent compound against both studied enzymes was 3-bromo derivative 4l. The latter compound with IC50 = 5.96 nM was 18-times more potent than acarbose (IC50 = 106.63 nM) against α-glucosidase. Moreover, compound 4l with IC50 = 1.62 nM was 27-times more potent than acarbose (IC50 = 44.16 nM) against α-amylase. Molecular docking analysis revealed that this compound well accommodated in the binding site of α-glucosidase and α-amylase enzymes with notably more favorable binding energy as compared to acarbose.


Assuntos
Acarbose , Inibidores de Glicosídeo Hidrolases , Acarbose/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , alfa-Glucosidases/metabolismo , Hipoglicemiantes/química , alfa-Amilases/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...