Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 47(10): 3202-3211, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35842554

RESUMO

Systemic inflammation can have devastating effects on the central nervous system via its resident immune cells, the microglia. One of the primary mediators of this inflammation is inflammasomes, multiprotein complexes that trigger a release of inflammatory proteins when activated. Melatonin, a hormone with anti-inflammatory effects, is an attractive candidate for suppressing such inflammation. In this study, we have investigated how melatonin alters the microRNA (miRNA) transcriptome of microglial cells. For that purpose, we have performed RNA sequencing on a lipopolysaccharide and adenosine triphosphate (LPS + ATP) induced NLR family pyrin domain containing 3 (NLRP3) inflammasome activation model in the N9 mouse microglial cell line, with and without melatonin pre-treatment. We have identified 136 differentially expressed miRNAs in cells exposed to LPS + ATP compared to controls and 10 differentially expressed miRNAs in melatonin pre-treated cells compared to the inflammasome group. We have identified miR-155-3p as a miRNA that is upregulated with inflammasome activation and downregulated with melatonin treatment. We further confirmed this pattern of miR-155-3p expression in the brains of mice injected intraperitoneally with LPS. Moreover, an overexpression study with miRNA-155-3p mimic supported the idea that the protective effects of melatonin in NLRP3 inflammasome activation are partly associated with miRNA-155-3p inhibition.


Assuntos
Melatonina , MicroRNAs , Trifosfato de Adenosina/metabolismo , Animais , Inflamassomos/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Melatonina/metabolismo , Melatonina/farmacologia , Camundongos , MicroRNAs/metabolismo , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transcriptoma
2.
Methods Mol Biol ; 2257: 269-292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34432284

RESUMO

Exosomes, a type of extracellular vesicle, are small vesicles (30-100 nm) secreted into extracellular space from almost all types of cells. Exosomes mediate cell-to-cell communication carrying various biologically active molecules including microRNAs. Studies have shown that exosomal microRNAs play fundamental roles in healthy and pathological conditions such as immunity, cancer, and inflammation. In this chapter, we introduce the current knowledge on exosome biogenesis, techniques used in exosome research, and exosomal miRNA and their functions in biological and pathological processes.


Assuntos
Comunicação Celular , Exossomos/genética , Vesículas Extracelulares , Humanos , MicroRNAs/genética , Neoplasias
3.
Front Immunol ; 12: 737065, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858398

RESUMO

NLRP3 inflammasome activation contributes to several pathogenic conditions, including lipopolysaccharide (LPS)-induced sickness behavior characterized by reduced mobility and depressive behaviors. Dimethyl fumarate (DMF) is an immunomodulatory and anti-oxidative molecule commonly used for the symptomatic treatment of multiple sclerosis and psoriasis. In this study, we investigated the potential use of DMF against microglial NLRP3 inflammasome activation both in vitro and in vivo. For in vitro studies, LPS- and ATP-stimulated N9 microglial cells were used to induce NLRP3 inflammasome activation. DMF's effects on inflammasome markers, pyroptotic cell death, ROS formation, and Nrf2/NF-κB pathways were assessed. For in vivo studies, 12-14 weeks-old male BALB/c mice were treated with LPS, DMF + LPS and ML385 + DMF + LPS. Behavioral tests including open field, forced swim test, and tail suspension test were carried out to see changes in lipopolysaccharide-induced sickness behavior. Furthermore, NLRP3 and Caspase-1 expression in isolated microglia were determined by immunostaining. Here we demonstrated that DMF ameliorated LPS and ATP-induced NLRP3 inflammasome activation by reducing IL-1ß, IL-18, caspase-1, and NLRP3 levels, reactive oxygen species formation and damage, and inhibiting pyroptotic cell death in N9 murine microglia via Nrf2/NF-κB pathways. DMF also improved LPS-induced sickness behavior in male mice and decreased caspase-1/NLRP3 levels via Nrf2 activation. Additionally, we showed that DMF pretreatment decreased miR-146a and miR-155 both in vivo and in vitro. Our results proved the effectiveness of DMF on the amelioration of microglial NLRP3 inflammasome activation. We anticipate that this study will provide the foundation consideration for further studies aiming to suppress NLRP3 inflammasome activation associated with in many diseases and a better understanding of its underlying mechanisms.


Assuntos
Fumarato de Dimetilo/uso terapêutico , Comportamento de Doença/fisiologia , Fatores Imunológicos/uso terapêutico , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Microglia/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Inflamação/imunologia , Lipopolissacarídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Esclerose Múltipla/tratamento farmacológico , Psoríase/tratamento farmacológico , Transdução de Sinais
4.
Antioxidants (Basel) ; 10(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202842

RESUMO

NLRP3 inflammasome is a part of the innate immune system and responsible for the rapid identification and eradication of pathogenic microbes, metabolic stress products, reactive oxygen species, and other exogenous agents. NLRP3 inflammasome is overactivated in several neurodegenerative, cardiac, pulmonary, and metabolic diseases. Therefore, suppression of inflammasome activation is of utmost clinical importance. Melatonin is a ubiquitous hormone mainly produced in the pineal gland with circadian rhythm regulatory, antioxidant, and immunomodulatory functions. Melatonin is a natural product and safer than most chemicals to use for medicinal purposes. Many in vitro and in vivo studies have proved that melatonin alleviates NLRP3 inflammasome activity via various intracellular signaling pathways. In this review, the effect of melatonin on the NLRP3 inflammasome in the context of diseases will be discussed.

5.
Mol Biol Rep ; 48(5): 4171-4180, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34052966

RESUMO

Neuronal senescence, triggered by telomere shortening, oncogene activation, DNA damage, or oxidative stress, has been associated with neurodegenerative diseases' pathogenesis. Therefore, preventing neuronal senescence could be a novel treatment strategy for neurodegenerative diseases. Lithium (Li), the first-line treatment against bipolar disorder, has been shown to have neuroprotective effects in clinical, pre-clinical, and in vitro studies. Li can protect cells from senescence, and its effect on neuronal senescence was investigated in our study. Furthermore, we also investigated the effects of Li on the senescence-associated miR-34a/Sirt1/p53 pathway. In this study, hydrogen peroxide was used as an inducer for the "stress-induced premature senescence" model. In the senescence model, we have assessed Li's effects on senescence by analyzing ß-galactosidase activity, Sudan Black B, and senescence-associated heterochromatin foci (SAHF) stainings, and on cell cycle arrest by BrdU staining. Furthermore, expression levels of senescence and cell cycle arrest-related proteins (p53, p21, p16INK4a, and SIRT1) by western blotting. Finally, the effects of Li on senescence-associated miR-34a levels were measured by quantitative PCR. We show via Sudan Black B staining, ß-Gal activity assay, and by detecting SAHF, Li protects against senescence in neuronal cells. Then, Li's effect on signaling has also been determined on pathways involved in senescence and cell cycle arrest. Moreover, we have observed that Li has a modulatory effect on miR-34a expression. Therefore, we posit that Li suppresses senescence in neuronal cells and that this effect is mediated through miR-34a/Sirt1/p53 axis.


Assuntos
Senescência Celular/efeitos dos fármacos , Lítio/farmacologia , MicroRNAs/metabolismo , Neuroblastoma/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/genética , Humanos , Peróxido de Hidrogênio/farmacologia , MicroRNAs/genética , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/genética
6.
Front Immunol ; 10: 1511, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31327964

RESUMO

Inflammation is a crucial component of various stress-induced responses that contributes to the pathogenesis of major depressive disorder (MDD). Depressive-like behavior (DLB) is characterized by decreased mobility and depressive behavior that occurs in systemic infection induced by Lipopolysaccharide (LPS) in experimental animals and is considered as a model of exacerbation of MDD. We assessed the effects of melatonin on behavioral changes and inflammatory cytokine expression in hippocampus of mice in LPS-induced DLB, as well as its effects on NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome activation, oxidative stress and pyroptotic cell death in murine microglia in vitro. Intraperitoneal 5 mg/kg dose of LPS was used to mimic depressive-like behaviors and melatonin was given at a dose of 500 mg/kg for 4 times with 6 h intervals, starting at 2 h before LPS administration. Behavioral assessment was carried out at 24 h post-LPS injection by tail suspension and forced swimming tests. Additionally, hippocampal cytokine and NLRP3 protein levels were estimated. Melatonin increased mobility time of LPS-induced DLB mice and suppressed NLRP3 expression and interleukin-1ß (IL-1ß) cleavage in the hippocampus. Immunofluorescence staining of hippocampal tissue showed that NLRP3 is mainly expressed in ionized calcium-binding adapter molecule 1 (Iba1) -positive microglia. Our results show that melatonin prevents LPS and Adenosine triphosphate (ATP) induced NLRP3 inflammasome activation in murine microglia in vitro, evidenced by inhibition of NLRP3 expression, Apoptosis-associated speck-like protein containing a CARD (ASC) speck formation, caspase-1 cleavage and interleukin-1ß (IL-1ß) maturation and secretion. Additionally, melatonin inhibits pyroptosis, production of mitochondrial and cytosolic reactive oxygen species (ROS) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling. The beneficial effects of melatonin on NLRP3 inflammasome activation were associated with nuclear factor erythroid 2-related factor 2 (Nrf2) and Silent information regulator 2 homolog 1 (SIRT1) activation, which were reversed by Nrf2 siRNA and SIRT1 inhibitor treatment.


Assuntos
Depressão/tratamento farmacológico , Inflamassomos/metabolismo , Melatonina/farmacologia , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sirtuína 1/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Depressão/induzido quimicamente , Feminino , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Microglia/citologia , Microglia/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...