Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mikrobiologiia ; 85(4): 381-392, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28853770

RESUMO

Enrichment and pure cultures of hyperthermophilic archaea capable of anaerobic growth on one- carbon compounds (CO and/or formate) were obtained from deep-sea sites of hydrothermal activity at the Mid-Atlantic Ridge, Lau Basin, and Guaymas Basin. All isolates belonged to the T barophilus-T paralvi- .nellae group within the genus Thermococcus. In all cases available for analysis, the genomes of Thermococcus strains capable of growth by hydrogenogenic utilization of CO and/or formate contained clusters of genes en- coding energy-converting hydrogenase and either CO dehydrogenase or formate dehydrogenase and formate transporter. Apart from the previously known processes of hydrogenogenic oxidation of CO and formate, the oxidation of these substrates coupled to sulfur reduction was observed, processes previously unknown among archaea. The capacities for hydrogenogenic or sulfidogenic oxidation of CO and formate occurred in the studied strains in all possible combinations, which could only in part be explained by peculiarities of organi- zation of genetic determinants revealed in the genomes. Investigation of CO and formate consumption kinet- ics revealed that T barophilus strain Ch5 was able to grow at concentrations close to the environmental ones. Thus, it was shown that hyperthermophilic archaea from deep-sea hydrothermal vents are able to utilize one- carbon substrates of abiotic origin both in the presence of an electron acceptor (sulfur) and in its absence. These processes were probably of importance under the conditions of the early Earth biosphere.


Assuntos
Aldeído Oxirredutases/metabolismo , Monóxido de Carbono/metabolismo , Formiato Desidrogenases/metabolismo , Formiatos/metabolismo , Genoma Arqueal , Complexos Multienzimáticos/metabolismo , Thermococcus/metabolismo , Aldeído Oxirredutases/genética , Oceano Atlântico , Formiato Desidrogenases/genética , Expressão Gênica , Temperatura Alta , Hidrogênio/metabolismo , Fontes Hidrotermais , Cinética , Complexos Multienzimáticos/genética , Família Multigênica , Oxirredução , Filogenia , Água do Mar , Enxofre/metabolismo , Thermococcus/classificação , Thermococcus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA