Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2312058, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577827

RESUMO

While in nature, molecular chirality enables the formation of chiral macroscopic structures through crystallization and self-organization, such a transfer of molecular information to higher hierarchical levels is rarely observed in vitro. Here, the study reports on single crystals of microbially synthesized polyester poly[(R)-3-hydroxybutyrate], which have chiral habits when grown at the air-water interface, in analogy to the 2D crystallization of chiral lipids such as DPPC. Depending on the crystallization conditions, the chiral single crystals either undergo a transition into fiber-like structures, orassemble into larger superstructures with a uniform sense of rotation.

2.
Int J Biol Macromol ; 263(Pt 1): 130188, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373562

RESUMO

Plastic pollution is the biggest environmental concern of our time. Breakdown products like micro- and nano-plastics inevitably enter the food chain and pose unprecedented health risks. In this scenario, bio-based and biodegradable plastic alternatives have been given a momentum aiming to bridge a transition towards a more sustainable future. Polyhydroxyalkanoates (PHAs) are one of the few thermoplastic polymers synthesized 100 % via biotechnological routes which fully biodegrade in common natural environments. Poly(hydroxybutyrate-co-hydroxyhexanoate) [P(HB-co-HHx)] is a PHA copolymer with great potential for the commodity polymers industry, as its mechanical properties can be tailored through fine-tuning of its molar HHx content. We have recently developed a strategy that enables for reliable tailoring of the monomer content of P(HB-co-HHx). Nevertheless, there is often a lack of comprehensive investigation of the material properties of PHAs to evaluate whether they actually mimic the functionalities of conventional plastics. We present a detailed study of P(HB-co-HHx) copolymers with low to moderate hydroxyhexanoate content to understand how the HHx monomer content influences the thermal and mechanical properties and to link those to their abiotic degradation. By increasing the HHx fractions in the range of 2 - 14 mol%, we impart an extension of the processing window and application range as the melting temperature (Tm) and glass temperature (Tg) of the copolymers decrease from Tm 165 °C to 126 °C, Tg 4 °C to -5.9 °C, accompanied by reduced crystallinity from 54 % to 20 %. Elongation at break was increased from 5.7 % up to 703 % at 14 mol% HHx content, confirming that the range examined was sufficiently large to obtain ductile and brittle copolymers, while tensile strength was maintained throughout the studied range. Finally, accelerated abiotic degradation was shown to be slowed down with an increasing HHx fraction decreasing from 70 % to 55 % in 12 h.


Assuntos
Caproatos , Poli-Hidroxialcanoatos , Ácido 3-Hidroxibutírico/metabolismo , Hidroxibutiratos , Biotecnologia
3.
Int J Biol Macromol ; 253(Pt 2): 126760, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37683751

RESUMO

Biodegradable polyesters, such as polyhydroxyalkanoates (PHAs), are having a tremendous impact on biomedicine. However, these polymers lack functional moieties to impart functions like targeted delivery of molecules. Inspired by native GAPs, such as phasins and their polymer-binding and surfactant properties, we generated small material binding peptides (MBPs) for polyester surface functionalization using a rational approach based on amphiphilicity. Here, two peptides of 48 amino acids derived from phasins PhaF and PhaI from Pseudomonas putida, MinP and the novel-designed MinI, were assessed for their binding towards two types of PHAs, PHB and PHOH. In vivo, fluorescence studies revealed selective binding towards PHOH, whilst in vitro binding experiments using the Langmuir-Blodgett technique coupled to ellipsometry showed KD in the range of nM for all polymers and MBPs. Marked morphological changes of the polymer surface upon peptide adsorption were shown by BAM and AFM for PHOH. Moreover, both MBPs were successfully used to immobilize cargo proteins on the polymer surfaces. Altogether, this work shows that by redesigning the amphiphilicity of phasins, a high affinity but lower specificity to polyesters can be achieved in vitro. Furthermore, the MBPs demonstrated binding to PET, showing potential to bind cargo molecules also to synthetic polyesters.


Assuntos
Poli-Hidroxialcanoatos , Pseudomonas putida , Poliésteres/metabolismo , Proteínas de Bactérias/química , Poli-Hidroxialcanoatos/química , Peptídeos/metabolismo , Pseudomonas putida/metabolismo
4.
Polymers (Basel) ; 15(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36850204

RESUMO

Antimicrobial resistance has been declared one of the top 10 global public health threats. Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of recurring skin and soft tissue infections in patients with chronic skin conditions such as diabetic foot infections, making the treatment of the ulcers challenging. Wound dressings combined with metal nanoparticles have been suggested to prevent and treat MRSA-infected wounds. However, these particles are commonly synthesized by chemical approaches. In this study, we developed bio-based silver (Bio-AgNPs) and copper oxide nanoparticles (CuONPs) polymer composites using a microbially produced polyester from the Polyhydroxyalkanoates (PHAs) family. Poly(3-hydroxyoctanoate)-co-(3-hydroxyhexanoate) (PHO) was synthesized by Pseudomonas putida and functionalized in-situ with Bio-AgNPs or ex-situ with CuONPs. PHO-CuONPs films did not inhibit MRSA growth, while a reduction of 6.0 log CFU/mL was achieved with PHO-Bio-AgNPs synthesized from silver nitrate (AgNO3) solution at 3.5 mM. Exposure of human fibroblast cells (HFF-1) to the bioactive films did not induce notable cytotoxicity and genotoxicity, as seen by a viability higher than 79% and no significant changes in basal DNA damage. However, exposure to PHO-Bio-AgNPs induced oxidative DNA damage in HFF-1 cells. No hemolytic potential was observed, while platelet aggregation was promoted and desired for wound healing. Here we demonstrate the biosynthesis of polymer-nanoparticle composites and their potential as bioactive films for MRSA treatment.

5.
ACS Omega ; 7(9): 7625-7637, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35284759

RESUMO

One of the main products of pyrolysis is char. For the better performance and improvement of its physicochemical properties, it is necessary to make temperature changes. In this study, different temperatures have been tested for the pyrolysis of rice husk, and the biochar obtained from the process went through an evaluation to test its yield in the removal of emerging compounds such as azithromycin (AZT) and erythromycin (ERY). For this, pyrolysis of rice husk has been carried out at temperatures of 450, 500, 550, and 600 °C, and the biochars have been characterized by ultimate analysis and proximate analysis, as well as specific surface area tests. Then, different adsorption tests have been carried out with a 200 mg L-1 drug (AZT and ERY) solution prepared in the laboratory. All biochars have been found to present removal percentages higher than 95%. Therefore, obtaining biochar from rice husk at any temperature and using it in the removal of high-molecular-weight compounds are quite suitable.

6.
ISME Commun ; 2(1): 89, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37938754

RESUMO

The understanding and manipulation of microbial communities toward the conversion of lignocellulose and plastics are topics of interest in microbial ecology and biotechnology. In this study, the polymer-degrading capability of a minimal lignocellulolytic microbial consortium (MELMC) was explored by genome-resolved metagenomics. The MELMC was mostly composed (>90%) of three bacterial members (Pseudomonas protegens; Pristimantibacillus lignocellulolyticus gen. nov., sp. nov; and Ochrobactrum gambitense sp. nov) recognized by their high-quality metagenome-assembled genomes (MAGs). Functional annotation of these MAGs revealed that Pr. lignocellulolyticus could be involved in cellulose and xylan deconstruction, whereas Ps. protegens could catabolize lignin-derived chemical compounds. The capacity of the MELMC to transform synthetic plastics was assessed by two strategies: (i) annotation of MAGs against databases containing plastic-transforming enzymes; and (ii) predicting enzymatic activity based on chemical structural similarities between lignin- and plastics-derived chemical compounds, using Simplified Molecular-Input Line-Entry System and Tanimoto coefficients. Enzymes involved in the depolymerization of polyurethane and polybutylene adipate terephthalate were found to be encoded by Ps. protegens, which could catabolize phthalates and terephthalic acid. The axenic culture of Ps. protegens grew on polyhydroxyalkanoate (PHA) nanoparticles and might be a suitable species for the industrial production of PHAs in the context of lignin and plastic upcycling.

7.
Chem Catal ; 2(12): 3573-3589, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37350932

RESUMO

Enzymatic hydrolysis holds great promise for plastic waste recycling and upcycling. The interfacial catalysis mode, and the variability of polymer specimen properties under different degradation conditions, add to the complexity and difficulty of understanding polymer cleavage and engineering better biocatalysts. We present a systemic approach to studying the enzyme-catalyzed surface erosion of poly(ethylene terephthalate) (PET) while monitoring/controlling operating conditions in real time with simultaneous detection of mass loss and changes in viscoelastic behavior. PET nanofilms placed on water showed a porous morphology and a thickness-dependent glass transition temperature (Tg) between 40°C and 44°C, which is >20°C lower than the Tg of bulk amorphous PET. Hydrolysis by a dual-enzyme system containing thermostabilized variants of Ideonella sakaiensis PETase and MHETase resulted in a maximum depolymerization of 70% in 1 h at 50°C. We demonstrate that increased accessible surface area, amorphization, and Tg reduction speed up PET degradation while simultaneously lowering the threshold for degradation-induced crystallization.

8.
MRS Energy Sustain ; 9(1): 28-34, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37521367

RESUMO

Highlights: The production and consumption of commodity polymers have been an indispensable part of the development of our modern society. Owing to their adjustable properties and variety of functions, polymer-based materials will continue playing important roles in achieving the Sustainable Development Goals (SDG)s, defined by the United Nations, in key areas such as healthcare, transport, food preservation, construction, electronics, and water management. Considering the serious environmental crisis, generated by increasing consumption of plastics, leading-edge polymers need to incorporate two types of functions: Those that directly arise from the demands of the application (e.g. selective gas and liquid permeation, actuation or charge transport) and those that enable minimization of environmental harm, e.g., through prolongation of the functional lifetime, minimization of material usage, or through predictable disintegration into non-toxic fragments. Here, we give examples of how the incorporation of a thoughtful combination of properties/functions can enhance the sustainability of plastics ranging from material design to waste management. We focus on tools to measure and reduce the negative impacts of plastics on the environment throughout their life cycle, the use of renewable sources for their synthesis, the design of biodegradable and/or recyclable materials, and the use of biotechnological strategies for enzymatic recycling of plastics that fits into a circular bioeconomy. Finally, we discuss future applications for sustainable plastics with the aim to achieve the SDGs through international cooperation. Abstract: Leading-edge polymer-based materials for consumer and advanced applications are necessary to achieve sustainable development at a global scale. It is essential to understand how sustainability can be incorporated in these materials via green chemistry, the integration of bio-based building blocks from biorefineries, circular bioeconomy strategies, and combined smart and functional capabilities.

9.
Molecules ; 26(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34946683

RESUMO

As coffee consumption is on the rise, and the global coffee production creates an excess of 23 million tons of waste per year, a revolutionary transition towards a circular economy via the transformation and valorization of the main by-products from its cultivation and preparation (Coffee Husk (CH), Coffee Pulp (CP), Coffee Silverskin (CS), and Spent Coffee Grounds (SCG)) is inspiring researchers around the world. The recent growth of scholarly publications in the field and the emerging applications of coffee by-products published in these scientific papers encourages a systematic review to identify the knowledge structure, research hotspots, and to discuss the challenges and future directions. This paper displays a comprehensive scientometric analysis based on 108 articles with a high level of influence in the field of coffee by-products and their applications. According to our analysis, the research in this field shows an explosive growth since 2017, clustered in five core applications: bioactive compounds, microbial transformation, environmental applications, biofuels from thermochemical processes, and construction materials.


Assuntos
Café/química
10.
Environ Microbiol ; 22(9): 3922-3936, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32705785

RESUMO

Phasin PhaF, a multifunctional protein associated with the surface of polyhydroxyalkanoate (PHA) granules that also interacts with the nucleoid, contributes significantly to PHA biogenesis in pseudomonads. As a protein present on the surface of PHA granules, PhaF participates in granule stabilization and segregation, whereas its deletion has a notable impact on overall transcriptome, PHA accumulation and cell physiology, suggesting more extensive functions besides solely being a granule structural protein. Here, we followed a systematic approach to detect potential interactions of PhaF with other components of the cell, which could pinpoint unexplored functions of PhaF in the regulation of PHA production. We determined the PhaF interactome in Pseudomonas putida KT2440 via pull-down-mass spectrometry (PD-MS) experiments. PhaF complexed with PHA-related proteins, phasin PhaI and the transcriptional regulator PhaD, interactions that were verified to be direct using in vivo two-hybrid analysis. The determination of the PHA granule proteome showed that PhaI and three other potential PhaF interacting partners, but not PhaD, were granule-associated proteins. Analysis of the interaction of PhaF and PhaD with the phaI promoter by EMSA suggested a new role for PhaF in interacting with PhaD and raises new questions on the regulatory system controlling pha gene expression.


Assuntos
Proteínas de Bactérias/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Pseudomonas putida/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Grânulos Citoplasmáticos/metabolismo , Regulação Bacteriana da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Regiões Promotoras Genéticas , Ligação Proteica , Proteoma , Pseudomonas putida/genética , Fatores de Transcrição/genética
11.
Biomacromolecules ; 21(2): 761-771, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31841314

RESUMO

Polyhydroxyalkanoates (PHAs) have attracted attention as degradable (co)polyesters which can be produced by microorganisms with variations in the side chain. This structural variation influences not only the thermomechanical properties of the material but also its degradation behavior. Here, we used Langmuir monolayers at the air-water (A-W) interface as suitable models for evaluating the abiotic degradation of two PHAs with different side-chain lengths and crystallinity. By controlling the polymer state (semicrystalline, amorphous), the packing density, the pH, and the degradation mechanism, we could draw several significant conclusions. (i) The maximum degree of crystallinity for a PHA film to be efficiently degraded up to pH = 12.3 is 40%. (ii) PHA made of repeating units with shorter side-chain length are more easily hydrolyzed under alkaline conditions. The efficiency of alkaline hydrolysis decreased by about 65% when the polymer was 40% crystalline. (iii) In PHA films with a relatively high initial crystallinity, abiotic degradation initiated a chemi-crystallization phenomenon, detected as an increase in the storage modulus (E'). This could translate into an increase in brittleness and reduction in the material degradability. Finally, we demonstrate the stability of the measurement system for long-term experiments, which allows degradation conditions for polymers that could closely simulate real-time degradation.


Assuntos
Cristalização/métodos , Poliésteres/química , Poli-Hidroxialcanoatos/química , Pseudomonas putida , Hidrólise , Poliésteres/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Pseudomonas putida/metabolismo , Reologia/métodos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/fisiologia , Propriedades de Superfície
12.
Biomacromolecules ; 20(10): 3627-3640, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31529957

RESUMO

Within the natural world, organisms use information stored in their material structure to generate a physical response to a wide variety of environmental changes. The ability to program synthetic materials to intrinsically respond to environmental changes in a similar manner has the potential to revolutionize material science. By designing polymeric devices capable of responsively changing shape or behavior based on information encoded into their structure, we can create functional physical behavior, including a shape-memory and an actuation capability. Here we highlight the stimuli-responsiveness and shape-changing ability of biological materials and biopolymer-based materials, plus their potential biomedical application, providing a bioperspective on shape-memory materials. We address strategies to incorporate a shape-memory (actuation) function in polymeric materials, conceptualized in terms of its relationship with inputs (environmental stimuli) and outputs (shape change). Challenges and opportunities associated with the integration of several functions in a single material body to achieve multifunctionality are discussed. Finally, we describe how elements that sense, convert, and transmit stimuli have been used to create multisensitive materials.


Assuntos
Materiais Biomiméticos/química , Polímeros Responsivos a Estímulos/química , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/tendências , Engenharia Tecidual/métodos , Engenharia Tecidual/tendências
13.
Biomacromolecules ; 20(9): 3242-3252, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-30990311

RESUMO

Phasins are amphiphilic proteins located at the polymer-cytoplasm interface of bacterial polyhydroxyalkanoates (PHA). The immobilization of phasins on biomaterial surfaces is a promising way to enhance the hydrophilicity and supply cell-directing elements in bioinstructing processes. Optimizing the physical adsorption of phasins requires deep insights into molecular processes during polymer-protein interactions to preserve their structural conformation while optimizing surface coverage. Here, the assembly, organization, and stability of phasin PhaF from Pseudomonas putida at interfaces is disclosed. The Langmuir technique, combined with in situ microscopy and spectroscopic methods, revealed that PhaF forms stable and robust monolayers at different temperatures, with an almost flat orientation of its α-helix at the air-water interface. PhaF adsorption onto preformed monolayers of poly[(3-R-hydroxyoctanoate)-co-(3-R-hydroxyhexanoate)] (PHOHHx), yields stable mixed layers below π = ∼15.7 mN/m. Further insertion induces a molecular reorganization. PHOHHx with strong surface hydrophobicity is a more adequate substrate for PhaF adsorption than the less hydrophobic poly[(rac-lactide)-co-glycolide] (PLGA). The observed orientation of the main axis of the protein in relation to copolyester interfaces ensures the best exposure of the hydrophobic residues, providing a suitable coating strategy for polymer functionalization.


Assuntos
Lectinas de Plantas/química , Poli-Hidroxialcanoatos/química , Polímeros/química , Proteínas/química , Adsorção , Citoplasma/química , Citoplasma/genética , Interações Hidrofóbicas e Hidrofílicas , Proteínas/genética , Pseudomonas putida/química , Propriedades de Superfície , Tensoativos/química
14.
Biochim Biophys Acta Gen Subj ; 1863(2): 362-370, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30419286

RESUMO

BACKGROUND: Phasins are low molecular mass proteins that accumulate strongly in bacterial cells in response to the intracellular storage of polyhydroxyalkanoates (PHA). Although lacking catalytic activity, phasins are the major components of the surface of the PHA granules and could be potentially involved in the formation of a network-like protein layer surrounding the polyester inclusions. Structural models revealed phasins to possess coiled-coil regions that might be important in the establishment of protein-protein interactions. However, there is not experimental evidence of a coiled-coil mediated oligomerization in these proteins. METHODS: Structure prediction analyses were used to characterize the coiled-coil motifs of phasins PhaF and PhaI -produced by the model bacterium Pseudomonas putida KT2440-. Their oligomerization was evaluated by biolayer interferometry and the in vivo two-hybrid (BACTH) system. The interaction ability of a series of coiled-coil mutated derivatives was also measured. RESULTS: The formation of PhaF and PhaI complexes was detected. A predicted short leucine zipper-like coiled-coil (ZIP), containing "ideal" residues located within the hydrophobic core, was shown responsible for the oligomers stability. The substitution of key residues (leucines or valines) in PhaI ZIP (ZIPI) for alanine reduced by four fold the oligomerization efficiency. CONCLUSIONS: These results indicate that coiled-coil motifs are essential for phasin interactions. Correct oligomerization requires the formation of a stable hydrophobic interface between both phasins. GENERAL SIGNIFICANCE: Our findings elucidate the oligomerization motif of PhaF and PhaI. This motif is present in most phasins from PHA-accumulating bacteria and offers a potentially important target for modulating the PHA granules stability.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Zíper de Leucina , Poli-Hidroxialcanoatos/metabolismo , Pseudomonas putida/metabolismo , Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Interações Hidrofóbicas e Hidrofílicas , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/genética
15.
Langmuir ; 35(3): 678-686, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30580527

RESUMO

Phasins, the major proteins coating polyhydroxyalkanoate (PHA) granules, have been proposed as suitable biosurfactants for multiple applications because of their amphiphilic nature. In this work, we analyzed the interfacial activity of the amphiphilic α-helical phasin PhaF from Pseudomonas putida KT2440 at different hydrophobic-hydrophilic interfacial environments. The binding of PhaF to surfaces containing PHA or phospholipids, postulated as structural components of PHA granules, was confirmed in vitro using supported lipid bilayers and confocal microscopy, with polyhydroxyoctanoate- co-hexanoate P(HO- co-HHx) and Escherichia coli lipid extract as model systems. The surfactant-like capabilities of PhaF were determined by measuring changes in surface pressure in Langmuir devices. PhaF spontaneously adsorbed at the air-water interface, reducing the surface tension from 72 mN/m (water surface tension at 25 °C) to 50 mN/m. The differences in the adsorption of the protein in the presence of different phospholipid films showed a marked preference for phosphatidylglycerol species, such as 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphoglycerol. The PHA-binding domain of PhaF (BioF) conserved a similar surface activity to PhaF, suggesting that it is responsible for the surfactant properties of the whole protein. These new findings not only increase our knowledge about the role of phasins in the PHA machinery but also open new outlooks for the application of these proteins as biosurfactants.


Assuntos
Proteínas de Bactérias/química , Pseudomonas putida/química , Tensoativos/química , Adsorção , Proteínas de Bactérias/isolamento & purificação , Escherichia coli/genética , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Domínios Proteicos , Tensoativos/isolamento & purificação , Lipossomas Unilamelares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...