Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alcohol Clin Exp Res ; 42(5): 926-938, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29469962

RESUMO

BACKGROUND: Phosphodiesterase type 4 (PDE4) inhibitors produce widespread anti-inflammatory effects and reduce ethanol (EtOH) consumption in several rodent models. These drugs are potential treatments for several diseases, including central nervous system disorders, but clinical use is limited by their emetic activity. Apremilast is a selective PDE4 inhibitor with fewer gastrointestinal side effects that is FDA-approved for the treatment of psoriasis. METHODS: We measured the acute and chronic effects of apremilast on EtOH consumption in male and female C57BL/6J mice using the continuous and intermittent 24-hour 2-bottle choice drinking models. We also studied the effects of apremilast on preference for sucrose or saccharin, spontaneous locomotor activity, and blood EtOH clearance. Finally, apremilast levels in plasma, liver, and brain were measured 1 or 2 hours after injection. RESULTS: In the continuous and intermittent drinking tests, apremilast (15 to 50 mg/kg, p.o.) dose dependently reduced EtOH intake and preference in male and female mice. Higher doses of apremilast (30 to 50 mg/kg) also reduced total fluid intake in these mice. Chronic administration of apremilast (20 mg/kg) produced a stable reduction in EtOH consumption in both drinking tests with no effect on total fluid intake. The drinking effects were reversible after drug treatment was replaced with vehicle administration (saline) for 2 to 4 days. Six daily apremilast injections did not alter preference for saccharin or sucrose in male or female mice. Apremilast (20 mg/kg) transiently decreased spontaneous locomotor activity and did not alter blood EtOH clearance. The highest levels of apremilast were found in liver followed by plasma and brain. CONCLUSIONS: Apremilast produced stable reductions in voluntary EtOH consumption and was rapidly distributed to plasma and tissues (including the brain), suggesting that it may be an improved PDE4 inhibitor for medication development and repurposing efforts to treat alcohol abuse.


Assuntos
Consumo de Bebidas Alcoólicas/prevenção & controle , Preferências Alimentares/efeitos dos fármacos , Talidomida/análogos & derivados , Animais , Encéfalo/metabolismo , Comportamento de Escolha/efeitos dos fármacos , Etanol/sangue , Etanol/farmacocinética , Feminino , Fígado/metabolismo , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Sacarina/farmacologia , Sacarose/farmacologia , Talidomida/sangue , Talidomida/farmacocinética , Talidomida/farmacologia
2.
Drug Deliv Transl Res ; 8(6): 1828-1843, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29288358

RESUMO

Recently, results have been published for the first successful phase I human clinical trial investigating the use of dissolving polymeric microneedles… Even so, further clinical development represents an important hurdle that remains in the translation of microneedle technology to approved products. Specifically, the potential for accumulation of polymer within the skin upon repeated application of dissolving and coated microneedles, combined with a lack of safety data in humans, predicates a need for further clinical investigation. Polymers are an important consideration for microneedle technology-from both manufacturing and drug delivery perspectives. The use of polymers enables a tunable delivery strategy, but the scalability of conventional manufacturing techniques could arguably benefit from further optimization. Micromolding has been suggested in the literature as a commercially viable means to mass production of both dissolving and swellable microneedles. However, the reliance on master molds, which are commonly manufactured using resource intensive microelectronics industry-derived processes, imparts notable material and design limitations. Further, the inherently multi-step filling and handling processes associated with micromolding are typically batch processes, which can be challenging to scale up. Similarly, conventional microneedle coating processes often follow step-wise batch processing. Recent developments in microneedle coating and manufacturing techniques are highlighted, including micromilling, atomized spraying, inkjet printing, drawing lithography, droplet-born air blowing, electro-drawing, continuous liquid interface production, 3D printing, and polyelectrolyte multilayer coating. This review provides an analysis of papers reporting on potentially scalable production techniques for the coating and manufacturing of microneedles.


Assuntos
Microinjeções/instrumentação , Polímeros/química , Tecnologia Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/instrumentação , Humanos , Agulhas , Preparações Farmacêuticas/administração & dosagem , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...