Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 111(29): 6600-9, 2007 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-17585737

RESUMO

Pressure-dependent product yields have been experimentally determined for the cross-radical reaction C2H5 + C2H3. These results have been extended by calculations. It is shown that the chemically activated combination adduct, 1-C4H8*, is either stabilized by bimolecular collisions or subject to a variety of unimolecular reactions including cyclizations and decompositions. Therefore the "apparent" combination/disproportionation ratio exhibits a complex pressure dependence. The experimental studies were performed at 298 K and at selected pressures between about 4 Torr (0.5 kPa) and 760 Torr (101 kPa). Ethyl and vinyl radicals were simultaneously produced by 193 nm excimer laser photolysis of C2H5COC2H3 or photolysis of C2H3Br and C2H5COC2H5. Gas chromatograph/mass spectrometry/flame ionization detection (GC/MS/FID) were used to identify and quantify the final reaction products. The major combination reactions at pressures between 500 (66.5 kPa) and 760 Torr are (1c) C2H5+C2H3-->1-butene, (2c) C2H5 + C2H5-->n-butane, and (3c) C2H3+C2H3-->1,3-butadiene. The major products of the disproportionation reactions are ethane, ethylene, and acetylene. At moderate and lower pressures, secondary products, including propene, propane, isobutene, 2-butene (cis and trans), 1-pentene, 1,4-pentadiene, and 1,5-hexadiene are also observed. Two isomers of C4H6, cyclobutene and/or 1,2-butadiene, were also among the likely products. The pressure-dependent yield of the cross-combination product, 1-butene, was compared to the yield of n-butane, the combination product of reaction (2c), which was found to be independent of pressure over the range of this study. The [1-C4H8]/[C4H10] ratio was reduced from approximately 1.2 at 760 Torr (101 kPa) to approximately 0.5 at 100 Torr (13.3 kPa) and approximately 0.1 at pressures lower than about 5 Torr (approximately 0.7 kPa). Electronic structure and RRKM calculations were used to simulate both unimolecular and bimolecular processes. The relative importance of C-C and C-H bond ruptures, cyclization, decyclization, and complex decompositions are discussed in terms of energetics and structural properties. The pressure dependence of the product yields were computed and dominant reaction paths in this chemically activated system were determined. Both modeling and experiment suggest that the observed pressure dependence of [1-C4H8]/[C4H10] is due to decomposition of the chemically activated combination adduct 1-C4H8* in which the weaker allylic C-C bond is broken: H2C=CHCH2CH3-->C3H5+CH3. This reaction occurs even at moderate pressures of approximately 200 Torr (26 kPa) and becomes more significant at lower pressures. The additional products detected at lower pressures are formed from secondary radical-radical reactions involving allyl, methyl, ethyl, and vinyl radicals. The modeling studies have extended the predictions of product distributions to different temperatures (200-700 K) and a wider range of pressures (10(-3)-10(5) Torr). These calculations indicate that the high-pressure [1-C4H8]/[C4H10] yield ratio is 1.3+/-0.1.

2.
J Phys Chem A ; 106(25): 6060-6067, 2002 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29791993

RESUMO

The recombination of methyl radicals is the major loss process for methyl in the atmospheres of Saturn and Neptune. The serious disagreement between observed and calculated levels of CH3 has led to suggestions that the atmospheric models greatly underestimated the loss of CH3 due to poor knowledge of the rate of the reaction CH3 + CH3 + M → C2H6 + M at the low temperatures and pressures of these atmospheric systems. In an attempt to resolve this problem, the absolute rate constant for the self-reaction of CH3 has been measured using the discharge-flow kinetic technique coupled to mass spectrometric detection at T = 202 and 298 K and P = 0.6-2.0 Torr nominal pressure (He). CH3 was produced by the reaction of F with CH4, with [CH4] in large excess over [F], and detected by low energy (11 eV) electron impact ionization at m/ z = 15. The results were obtained by graphical analysis of plots of the reciprocal of the CH3 signal vs reaction time. At T = 298 K, k 1(0.6 Torr) = (2.15 ± 0.42) × 10-11 cm3 molecule-1 s-1 and k 1(1 Torr) = (2.44 ± 0.52) × 10-11 cm3 molecule-1 s-1. At T = 202 K, the rate constant increased from k 1(0.6 Torr) = (5.04 ± 1.15) × 10-11 cm3 molecule-1 s-1 to k 1(1.0 Torr) = (5.25 ± 1.43) × 10-11 cm3 molecule-1 s-1 to k 1(2.0 Torr) = (6.52 ± 1.54) × 10-11 cm3 molecule-1 s-1, indicating that the reaction is in the falloff region. Klippenstein and Harding had previously calculated rate constant falloff curves for this self-reaction in Ar buffer gas. Transforming these results for a He buffer gas suggest little change in the energy removal per collision, -ã€ˆΔ E〉d, with decreasing temperature and also indicate that -ã€ˆΔ E〉d for He buffer gas is approximately half of that for Argon. Since the experimental results seem to at least partially affirm the validity of the Klippenstein and Harding calculations, we suggest that, in atmospheric models of the outer planets, use of the theoretical results for k 1 is preferable to extrapolation of laboratory data to pressures and temperatures well beyond the range of the experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...