Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 229: 107318, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36592580

RESUMO

BACKGROUND AND OBJECTIVE: For early breast cancer detection, regular screening with mammography imaging is recommended. Routine examinations result in datasets with a predominant amount of negative samples. The limited representativeness of positive cases can be problematic for learning Computer-Aided Diagnosis (CAD) systems. Collecting data from multiple institutions is a potential solution to mitigate this problem. Recently, federated learning has emerged as an effective tool for collaborative learning. In this setting, local models perform computation on their private data to update the global model. The order and the frequency of local updates influence the final global model. In the context of federated adversarial learning to improve multi-site breast cancer classification, we investigate the role of the order in which samples are locally presented to the optimizers. METHODS: We define a novel memory-aware curriculum learning method for the federated setting. We aim to improve the consistency of the local models penalizing inconsistent predictions, i.e., forgotten samples. Our curriculum controls the order of the training samples prioritizing those that are forgotten after the deployment of the global model. Our approach is combined with unsupervised domain adaptation to deal with domain shift while preserving data privacy. RESULTS: Two classification metrics: area under the receiver operating characteristic curve (ROC-AUC) and area under the curve for the precision-recall curve (PR-AUC) are used to evaluate the performance of the proposed method. Our method is evaluated with three clinical datasets from different vendors. An ablation study showed the improvement of each component of our method. The AUC and PR-AUC are improved on average by 5% and 6%, respectively, compared to the conventional federated setting. CONCLUSIONS: We demonstrated the benefits of curriculum learning for the first time in a federated setting. Our results verified the effectiveness of the memory-aware curriculum federated learning for the multi-site breast cancer classification. Our code is publicly available at: https://github.com/ameliajimenez/curriculum-federated-learning.


Assuntos
Conscientização , Neoplasias , Cognição , Currículo , Aprendizagem , Mamografia
2.
Diagnostics (Basel) ; 13(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36611358

RESUMO

Tools based on deep learning models have been created in recent years to aid radiologists in the diagnosis of breast cancer from mammograms. However, the datasets used to train these models may suffer from class imbalance, i.e., there are often fewer malignant samples than benign or healthy cases, which can bias the model towards the healthy class. In this study, we systematically evaluate several popular techniques to deal with this class imbalance, namely, class weighting, over-sampling, and under-sampling, as well as a synthetic lesion generation approach to increase the number of malignant samples. These techniques are applied when training on three diverse Full-Field Digital Mammography datasets, and tested on in-distribution and out-of-distribution samples. The experiments show that a greater imbalance is associated with a greater bias towards the majority class, which can be counteracted by any of the standard class imbalance techniques. On the other hand, these methods provide no benefit to model performance with respect to Area Under the Curve of the Recall Operating Characteristic (AUC-ROC), and indeed under-sampling leads to a reduction of 0.066 in AUC in the case of a 19:1 benign to malignant imbalance. Our synthetic lesion methodology leads to better performance in most cases, with increases of up to 0.07 in AUC on out-of-distribution test sets over the next best experiment.

3.
IEEE Trans Med Imaging ; 40(10): 2711-2722, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33417539

RESUMO

Early breast cancer screening through mammography produces every year millions of images worldwide. Despite the volume of the data generated, these images are not systematically associated with standardized labels. Current protocols encourage giving a malignancy probability to each studied breast but do not require the explicit and burdensome annotation of the affected regions. In this work, we address the problem of abnormality detection in the context of such weakly annotated datasets. We combine domain knowledge about the pathology and clinically available image-wise labels to propose a mixed self- and weakly supervised learning framework for abnormalities reconstruction. We also introduce an auxiliary classification task based on the reconstructed regions to improve explainability. We work with high-resolution imaging that enables our network to capture different findings, including masses, micro-calcifications, distortions, and asymmetries, unlike most state-of-the-art works that mainly focus on masses. We use the popular INBreast dataset as well as our private multi-manufacturer dataset for validation and we challenge our method in segmentation, detection, and classification versus multiple state-of-the-art methods. Our results include image-wise AUC up to 0.86, overall region detection true positives rate of 0.93, and the pixel-wise F1 score of 64% on malignant masses.


Assuntos
Neoplasias da Mama , Redes Neurais de Computação , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Detecção Precoce de Câncer , Feminino , Humanos , Mamografia
4.
Front Radiol ; 1: 796078, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37492176

RESUMO

In breast cancer screening, binary classification of mammograms is a common task aiming to determine whether a case is malignant or benign. A Computer-Aided Diagnosis (CADx) system based on a trainable classifier requires clean data and labels coming from a confirmed diagnosis. Unfortunately, such labels are not easy to obtain in clinical practice, since the histopathological reports of biopsy may not be available alongside mammograms, while normal cases may not have an explicit follow-up confirmation. Such ambiguities result either in reducing the number of samples eligible for training or in a label uncertainty that may decrease the performances. In this work, we maximize the number of samples for training relying on multi-task learning. We design a deep-neural-network-based classifier yielding multiple outputs in one forward pass. The predicted classes include binary malignancy, cancer probability estimation, breast density, and image laterality. Since few samples have all classes available and confirmed, we propose to introduce the uncertainty related to the classes as a per-sample weight during training. Such weighting prevents updating the network's parameters when training on uncertain or missing labels. We evaluate our approach on the public INBreast and private datasets, showing statistically significant improvements compared to baseline and independent state-of-the-art approaches. Moreover, we use mammograms from Susan G. Komen Tissue Bank for fine-tuning, further demonstrating the ability to improve the performances in our multi-task learning setup from raw clinical data. We achieved the binary classification performance of AUC = 80.46 on our private dataset and AUC = 85.23 on the INBreast dataset.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...