Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 139: 104986, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34739970

RESUMO

KIAA1524 is the gene encoding the human cancerous inhibitor of PP2A (CIP2A) protein which is regarded as a novel target for cancer therapy. It is overexpressed in 65%-90% of tissues in almost all studied human cancers. CIP2A expression correlates with cancer progression, disease aggressivity in lung cancer besides poor survival and resistance to chemotherapy in breast cancer. Herein, a pan-cancer analysis of public gene expression datasets was conducted showing significant upregulation of CIP2A in cancerous and metastatic tissues. CIP2A overexpression also correlated with poor survival of cancer patients. To determine the non-coding variants associated with CIP2A overexpression, 5'UTR and 3'UTR variants were annotated and scored using RegulomeDB and Enformer deep learning model. The 5'UTR variants rs1239349555, rs1576326380, and rs1231839144 were predicted to be potential regulators of CIP2A overexpression scoring best on RegulomeDB annotations with a high "2a" rank of supporting experimental data. These variants also scored the highest on Enformer predictions. Analysis of the 3'UTR variants of CIP2A predicted rs56255137 and rs58758610 to alter binding sites of hsa-miR-500a-5 and (hsa-miR-3671, hsa-miR-5692a) respectively. Both variants were also found in linkage disequilibrium with rs11709183 and rs147863209 respectively at r2 ≥ 0.8. The aforementioned variants were found to be eQTL hits significantly associated with CIP2A overexpression. Further, analysis of rs11709183 and rs147863209 revealed a high "2b" rank on RegulomeDB annotations indicating a probable effect on DNAse transcription factors binding. The MuTarget analysis indicated that somatic mutations in TP53 are significantly associated with upregulated CIP2A in human cancers. Analysis of missense SNPs on CIP2A solved structure predicted seven deleterious effects. Four of these variants were also predicted as structurally and functionally destabilizing to CIP2A including; rs375108755, rs147942716, rs368722879, and rs367941403. Variant rs1193091427 was predicted as a potential intronic splicing mutation that might be responsible for the novel CIP2A variant (NOCIVA) in multiple myeloma. Finally, Enrichment of the Wnt/ß-catenin pathway within the CIP2A regulatory gene network suggested potential of therapeutic combinations between FTY720 with Wnt/ß-catenin, Plk1 and/or HDAC inhibitors to downregulate CIP2A which has been shown to be essential for the survival of different cancer cell lines.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Pulmonares , Autoantígenos/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação
2.
Biomed J ; 41(2): 118-128, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29866600

RESUMO

BACKGROUND: XAGE-1b is shown to be overexpressed in lung adenocarcinoma and to be a strong immunogenic antigen among non-small cell lung cancer (NSCLC) patients. However, 3D structure of XAGE-1b is not available and its confirmation has not been solved yet. METHODS: Multiple sequence alignment was run to select the most reliable templates. Homology modeling technique was performed using computer-based tool to generate 3-dimensional structure models, eight models were generated and assessed on basis of local and global quality. Immune Epitope Database (IEDB) tools were then used to determine potential B-Cell epitopes while NetMHCpan algorithms were used to enhance the determination for potential epitopes of both Cytotoxic T-lymphocytes and T-helper cells. RESULTS: Computational prediction was performed for B-Cell epitopes, prediction results generated; 3 linear epitopes where XAGE-1b (13-21) possessed the best score of 0.67, 5 discontinuous epitopes where XAGE-1b (40-52) possessed the best score of 0.67 based on the predicted model of the finest quality. For a potential vaccine design, computational prediction yielded potential Human Leukocyte Antigen (HLA) class I epitopes including HLA-B*08:01-restricted XAGE-1b (3-11) epitope which was the best with 0.2 percentile rank. Regarding HLA Class II epitopes, HLA-DRB1*12:01-restricted XAGE-1b (25-33) was the most antigenic epitope with 5.91 IC50 value. IC50 values were compared with experimental values and population coverage percentages of epitopes were computed. CONCLUSIONS: This study predicted a model of XAGE-1b tertiary structure which could explain its antigenic function and facilitate usage of predicted peptides for experimental validation towards designing immunotherapies against NSCLC.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/terapia , Epitopos de Linfócito B , Epitopos de Linfócito T , Neoplasias Pulmonares/terapia , Antígenos de Neoplasias/química , Humanos , Imunoterapia , Modelos Moleculares , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...