Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(13): eadk2152, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552018

RESUMO

The evolution of oxygen cycles on Earth's surface has been regulated by the balance between molecular oxygen production and consumption. The Neoproterozoic-Paleozoic transition likely marks the second rise in atmospheric and oceanic oxygen levels, widely attributed to enhanced burial of organic carbon. However, it remains disputed how marine organic carbon production and burial respond to global environmental changes and whether these feedbacks trigger global oxygenation during this interval. Here, we report a large lithium isotopic and elemental dataset from marine mudstones spanning the upper Neoproterozoic to middle Cambrian [~660 million years ago (Ma) to 500 Ma]. These data indicate a dramatic increase in continental clay formation after ~525 Ma, likely linked to secular changes in global climate and compositions of the continental crust. Using a global biogeochemical model, we suggest that intensified continental weathering and clay delivery to the oceans could have notably increased the burial efficiency of organic carbon and facilitated greater oxygen accumulation in the earliest Paleozoic oceans.

2.
Geobiology ; 21(5): 571-591, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37194613

RESUMO

The early Paleozoic emergence of bioturbating (sediment-dwelling and -mixing) animals has long been assumed to have led to substantial changes in marine biogeochemistry, seafloor ecology, and the preservation potential of both sedimentary and fossil archives. However, the timing of the rise of bioturbation and environmental patterns in its expansion have long been subjects of debate-resolution of which has been hampered, in part, by a paucity of high-resolution bioturbation data or of systematic investigations of facies trends in lower Paleozoic bioturbation. To address these issues, we conducted an integrated sedimentological and ichnological characterization of the Cambrian-Ordovician Port au Port succession and Cow Head Group of western Newfoundland, encompassing over 350 meters of stratigraphy logged at the centimeter to decimeter scale. We find that, across a wide range of marine facies, bioturbation does not on average exceed moderate intensities-corroborating observations from other lower Paleozoic successions indicating that the early Paleozoic development of bioturbation was a protracted process. Moreover, bioturbation intensities in the Port au Port succession and Cow Head Group are commonly characterized by considerable variability at even fine scales of stratigraphic resolution and changes in bioturbation intensity correlate strongly with variability in sedimentary facies. We observe that facies recording nearshore depositional environments and carbonate-rich lithologies are each characterized by the highest intensities of both burrowing and sediment mixing. These data highlight the need for a high-resolution and facies-specific approach to reconstructing the evolutionary history of bioturbation and suggest that average levels of bioturbation, although relatively low throughout this interval, increased notably earlier in nearshore marine settings.


Assuntos
Evolução Biológica , Fósseis , Animais , Terra Nova e Labrador , Fácies , Sedimentos Geológicos/química
3.
Nature ; 615(7951): 265-269, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813968

RESUMO

Calcium carbonate formation is the primary pathway by which carbon is returned from the ocean-atmosphere system to the solid Earth1,2. The removal of dissolved inorganic carbon from seawater by precipitation of carbonate minerals-the marine carbonate factory-plays a critical role in shaping marine biogeochemical cycling1,2. A paucity of empirical constraints has led to widely divergent views on how the marine carbonate factory has changed over time3-5. Here we use geochemical insights from stable strontium isotopes to provide a new perspective on the evolution of the marine carbonate factory and carbonate mineral saturation states. Although the production of carbonates in the surface ocean and in shallow seafloor settings have been widely considered the predominant carbonate sinks for most of the history of the Earth6, we propose that alternative processes-such as porewater production of authigenic carbonates-may have represented a major carbonate sink throughout the Precambrian. Our results also suggest that the rise of the skeletal carbonate factory decreased seawater carbonate saturation states.


Assuntos
Carbonatos , Sedimentos Geológicos , Água do Mar , Animais , Organismos Aquáticos/química , Organismos Aquáticos/metabolismo , Carbonato de Cálcio/análise , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Carbono/análise , Carbono/química , Carbono/metabolismo , Sequestro de Carbono , Carbonatos/análise , Carbonatos/química , Carbonatos/metabolismo , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Água do Mar/análise , Água do Mar/química , Isótopos de Estrôncio , História Antiga
5.
Sci Rep ; 12(1): 8631, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606399

RESUMO

Earth's earliest fossils of complex macroscopic life are recorded in Ediacaran-aged siliciclastic deposits as exceptionally well-preserved three-dimensional casts and molds, known as "Ediacara-style" preservation. Ediacara-style fossil assemblages commonly include both macrofossils of the enigmatic Ediacara Biota and associated textural impressions attributed to microbial matgrounds that were integral to the ecology of Ediacara communities. Here, we use an experimental approach to interrogate to what extent the presence of mat-forming microorganisms was likewise critical to the Ediacara-style fossilization of these soft-bodied organisms. We find evidence that biofilms can play an instrumental role in fostering fossilization. Rapid silica precipitation associated with macroorganism tissues is enhanced in the presence of mat- and biofilm-forming microorganisms. These results indicate that the occurrence of microbial mats and biofilms may have strongly shaped the preservational window for Ediacara-style fossils associated with early diagenetic silica cements, and therefore influenced the distribution and palaeoecological interpretation of the Ediacara Biota fossil record.


Assuntos
Evolução Biológica , Fósseis , Biofilmes , Biota , Dióxido de Silício
6.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34580216

RESUMO

Marine dissolved organic carbon (DOC), the largest pool of reduced carbon in the oceans, plays an important role in the global carbon cycle and contributes to the regulation of atmospheric oxygen and carbon dioxide abundances. Despite its importance in global biogeochemical cycles, the long-term history of the marine DOC reservoir is poorly constrained. Nonetheless, significant changes to the size of the oceanic DOC reservoir through Earth's history have been commonly invoked to explain changes to ocean chemistry, carbon cycling, and marine ecology. Here, we present a revised view of the evolution of marine DOC concentrations using a mechanistic carbon cycle model that can reproduce DOC concentrations in both oxic and anoxic modern environments. We use this model to demonstrate that the overall size of the marine DOC reservoir has likely undergone very little variation through Earth's history, despite major changes in the redox state of the ocean-atmosphere system and the nature and efficiency of the biological carbon pump. A relatively static marine DOC reservoir across Earth's history renders it unlikely that major changes in marine DOC concentrations have been responsible for driving massive repartitioning of surface carbon or the large carbon isotope excursions observed in Earth's stratigraphic record and casts doubt on previously hypothesized links between marine DOC levels and the emergence and radiation of early animals.

7.
Interface Focus ; 10(4): 20190100, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32642047

RESUMO

The Precambrian Ediacara Biota-Earth's earliest fossil record of communities of macroscopic, multicellular organisms-provides critical insights into the emergence of complex life on our planet. Excavation and reconstruction of nearly 300 m2 of fossiliferous bedding planes in the Ediacara Member of the Rawnsley Quartzite, at the National Heritage Ediacara fossil site Nilpena in South Australia, have permitted detailed study of the sedimentology, taphonomy and palaeoecology of Ediacara fossil assemblages. Characterization of Ediacara macrofossils and textured organic surfaces at the scale of facies, bedding planes and individual specimens has yielded unprecedented insight into the manner in which the palaeoenvironmental settings inhabited by Ediacara communities-particularly hydrodynamic conditions-influenced the aut- and synecology of Ediacara organisms, as well as the morphology and assemblage composition of Ediacara fossils. Here, we describe the manner in which environmental processes mediated the development of taphofacies hosting Ediacara fossil assemblages. Using two of the most common Ediacara Member fossils, Arborea and Dickinsonia, as examples, we delineate criteria that can be used to distinguish between ecological, environmental and biostratinomic signals and reconstruct how interactions between these processes have distinctively shaped the Ediacara fossil record.

8.
Nat Commun ; 11(1): 3046, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32528111

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Nat Commun ; 11(1): 2232, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32376824

RESUMO

The marine phosphorus cycle plays a critical role in controlling the extent of global primary productivity and thus atmospheric pO2 on geologic time scales. However, previous attempts to model carbon-phosphorus-oxygen feedbacks have neglected key parameters that could shape the global P cycle. Here we present new diagenetic models to fully parameterize marine P burial. We have also coupled this diagenetic framework to a global carbon cycle model. We find that seawater calcium concentration, by strongly influencing carbonate fluorapatite (CFA) formation, is a key factor controlling global phosphorus cycling, and therefore plays a critical role in shaping the global oxygen cycle. A compilation of Cenozoic deep-sea sedimentary phosphorus speciation data provides empirical support for the idea that CFA formation is strongly influenced by marine Ca concentrations. Therefore, we propose a previously overlooked coupling between Phanerozoic tectonic cycles, the major-element composition of seawater, the marine phosphorus cycle, and atmospheric pO2.

10.
Geobiology ; 18(4): 486-496, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32243705

RESUMO

Morphologically complex trace fossils, recording the infaunal activities of bilaterian animals, are common in Phanerozoic successions but rare in the Ediacaran fossil record. Here, we describe a trace fossil assemblage from the lower Dunfee Member of the Deep Spring Formation at Mount Dunfee (Nevada, USA), over 500 m below the Ediacaran-Cambrian boundary. Although millimetric in scale and largely not fabric-disruptive, the Dunfee assemblage includes complex and sediment-penetrative trace fossil morphologies that are characteristic of Cambrian deposits. The Dunfee assemblage records one of the oldest documented instances of sediment-penetrative infaunalization, corroborating previous molecular, ichnologic, and paleoecological data suggesting that crown-group bilaterians and bilaterian-style ecologies were present in late Ediacaran shallow marine ecosystems. Moreover, Dunfee trace fossils co-occur with classic upper Ediacaran tubular body fossils in multiple horizons, indicating that Ediacaran infauna and epifauna coexisted and likely formed stable ecosystems.


Assuntos
Evolução Biológica , Fósseis , Animais , Ecossistema , Nevada
11.
Integr Comp Biol ; 58(4): 688-702, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718307

RESUMO

The Ediacara Biota, Earth's earliest communities of complex, macroscopic, multicellular organisms, appeared during the late Ediacaran Period, just prior to the Cambrian Explosion. Ediacara fossil assemblages consist of exceptionally preserved soft-bodied forms of enigmatic morphology and affinity which nonetheless represent a critical stepping-stone in the evolution of complex animal ecosystems. The Ediacara Biota has historically been divided into three successive Assemblages-the Avalon, the White Sea, and the Nama. Although the oldest (Avalon) Assemblage documents the initial appearance of several groups of Ediacara taxa, the two younger (White Sea and Nama) Assemblages record a particularly striking suite of ecological innovations, including the appearance of diverse Ediacara body plans-in tandem with the rise of bilaterian animals-as well as the emergence of novel ecological strategies such as movement, sexual reproduction, biomineralization, and the development of dense, heterogeneous benthic communities. Many of these ecological innovations appear to be linked to adaptations to heterogeneous substrates and shallow and energetic marine settings. In spite of these innovations, the majority of Ediacara taxa disappear by the end of the Ediacaran, with interpretations for this disappearance historically ranging from the closing of preservational windows to environmentally or biotically mediated extinction. However, in spite of the unresolved affinity and eventual extinction of individual Ediacara taxa, these distinctive ecological strategies persist across the Ediacaran-Cambrian boundary and are characteristic of younger animal-dominated communities of the Phanerozoic. The late Ediacaran emergence of these strategies may, therefore, have facilitated subsequent radiations of the Cambrian. In this light, the Ediacaran and Cambrian Periods, although traditionally envisioned as separate worlds, are likely to have been part of an ecological and evolutionary continuum.


Assuntos
Evolução Biológica , Fósseis/anatomia & histologia , Invertebrados/anatomia & histologia , Invertebrados/fisiologia , Animais , Biota
13.
Nature ; 532(7600): 496-9, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26982721

RESUMO

Problematic fossils, extinct taxa of enigmatic morphology that cannot be assigned to a known major group, were once a major issue in palaeontology. A long-favoured solution to the 'problem of the problematica', particularly the 'weird wonders' of the Cambrian Burgess Shale, was to consider them representatives of extinct phyla. A combination of new evidence and modern approaches to phylogenetic analysis has now resolved the affinities of most of these forms. Perhaps the most notable exception is Tullimonstrum gregarium, popularly known as the Tully monster, a large soft-bodied organism from the late Carboniferous Mazon Creek biota (approximately 309-307 million years ago) of Illinois, USA, which was designated the official state fossil of Illinois in 1989. Its phylogenetic position has remained uncertain and it has been compared with nemerteans, polychaetes, gastropods, conodonts, and the stem arthropod Opabinia. Here we review the morphology of Tullimonstrum based on an analysis of more than 1,200 specimens. We find that the anterior proboscis ends in a buccal apparatus containing teeth, the eyes project laterally on a long rigid bar, and the elongate segmented body bears a caudal fin with dorsal and ventral lobes. We describe new evidence for a notochord, cartilaginous arcualia, gill pouches, articulations within the proboscis, and multiple tooth rows adjacent to the mouth. This combination of characters, supported by phylogenetic analysis, identifies Tullimonstrum as a vertebrate, and places it on the stem lineage to lampreys (Petromyzontida). In addition to increasing the known morphological disparity of extinct lampreys, a chordate affinity for T. gregarium resolves the nature of a soft-bodied fossil which has been debated for more than 50 years.


Assuntos
Fósseis , Filogenia , Vertebrados/classificação , Nadadeiras de Animais/anatomia & histologia , Animais , Extinção Biológica , Olho/anatomia & histologia , Trato Gastrointestinal/anatomia & histologia , Illinois , Lampreias/classificação , Notocorda/anatomia & histologia , Dente/anatomia & histologia , Vertebrados/anatomia & histologia
14.
Sci Rep ; 5: 17097, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26597559

RESUMO

Oxygenation has widely been viewed as a major factor driving the emergence and diversification of animals. However, links between early animal evolution and shifts in surface oxygen levels have largely been limited to extrapolation of paleoredox conditions reconstructed from unfossiliferous strata to settings in which contemporaneous fossils were preserved. Herein, we present a multi-proxy paleoredox study of late Ediacaran (ca. 560-551 Ma) shales hosting the Miaohe Konservat-Lagerstätte of South China and, for comparison, equivalent non-fossil-bearing shales at adjacent sections. For the fossiliferous strata at Miaohe there is geochemical evidence for anoxic conditions, but paleontological evidence for at least episodically oxic conditions. An oxygen-stressed environment is consistent with the low diversity and simple morphology of Miaohe Biota macrofossils. However, there is no evidence for euxinic (anoxic and sulphidic) conditions for the fossiliferous strata at Miaohe, in contrast to adjacent unfossiliferous sections. Our results indicate that Ediacaran marine redox chemistry was highly heterogeneous, even at the kilometre-scale. Therefore, our study provides direct-rather than inferred-evidence that anoxia played a role in shaping a landmark Ediacaran ecosystem. If the anoxic conditions characteristic of the studied sections were widespread in the late Neoproterozoic, environmental stress would have hindered the development of complex ecosystems.


Assuntos
Organismos Aquáticos/química , Animais , Evolução Biológica , Ecossistema , Fósseis , Sedimentos Geológicos/análise , Ferro/análise , Ferro/química , Oxirredução , Oxigênio/análise , Oxigênio/química , Paleontologia , Água do Mar , Sulfetos/análise , Sulfetos/química , Oligoelementos/análise , Oligoelementos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...