Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 162: 114577, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37001181

RESUMO

AIMS: Atrial fibrillation (AF) has been associated with altered expression of the transcription factor Pitx2c and a high incidence of calcium release-induced afterdepolarizations. However, the relationship between Pitx2c expression and defective calcium homeostasis remains unclear and we here aimed to determine how Pitx2c expression affects calcium release from the sarcoplasmic reticulum (SR) and its impact on electrical activity in isolated atrial myocytes. METHODS: To address this issue, we applied confocal calcium imaging and patch-clamp techniques to atrial myocytes isolated from a mouse model with conditional atrial-specific deletion of Pitx2c. RESULTS: Our findings demonstrate that heterozygous deletion of Pitx2c doubles the calcium spark frequency, increases the frequency of sparks/site 1.5-fold, the calcium spark decay constant from 36 to 42 ms and the wave frequency from none to 3.2 min-1. Additionally, the cell capacitance increased by 30% and both the SR calcium load and the transient inward current (ITI) frequency were doubled. Furthermore, the fraction of cells with spontaneous action potentials increased from none to 44%. These effects of Pitx2c deficiency were comparable in right and left atrial myocytes, and homozygous deletion of Pitx2c did not induce any further effects on sparks, SR calcium load, ITI frequency or spontaneous action potentials. CONCLUSION: Our findings demonstrate that heterozygous Pitx2c deletion induces defects in calcium homeostasis and electrical activity that mimic derangements observed in right atrial myocytes from patients with AF and suggest that Pitx2c deficiency confers cellular electrophysiological hallmarks of AF to isolated atrial myocytes.


Assuntos
Fibrilação Atrial , Animais , Camundongos , Fibrilação Atrial/genética , Cálcio/metabolismo , Homozigoto , Deleção de Sequência , Miócitos Cardíacos/metabolismo
2.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901835

RESUMO

Increased adenosine A2A receptor (A2AR) expression and activation underlies a higher incidence of spontaneous calcium release in atrial fibrillation (AF). Adenosine A3 receptors (A3R) could counteract excessive A2AR activation, but their functional role in the atrium remains elusive, and we therefore aimed to address the impact of A3Rs on intracellular calcium homeostasis. For this purpose, we analyzed right atrial samples or myocytes from 53 patients without AF, using quantitative PCR, patch-clamp technique, immunofluorescent labeling or confocal calcium imaging. A3R mRNA accounted for 9% and A2AR mRNA for 32%. At baseline, A3R inhibition increased the transient inward current (ITI) frequency from 0.28 to 0.81 events/min (p < 0.05). Simultaneous stimulation of A2ARs and A3Rs increased the calcium spark frequency seven-fold (p < 0.001) and the ITI frequency from 0.14 to 0.64 events/min (p < 0.05). Subsequent A3R inhibition caused a strong additional increase in the ITI frequency (to 2.04 events/min; p < 0.01) and increased phosphorylation at s2808 1.7-fold (p < 0.001). These pharmacological treatments had no significant effects on L-type calcium current density or sarcoplasmic reticulum calcium load. In conclusion, A3Rs are expressed and blunt spontaneous calcium release at baseline and upon A2AR-stimulation in human atrial myocytes, pointing to A3R activation as a means to attenuate physiological and pathological elevations of spontaneous calcium release events.


Assuntos
Fibrilação Atrial , Receptores Purinérgicos P1 , Humanos , Adenosina/metabolismo , Fibrilação Atrial/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Homeostase , Miócitos Cardíacos/metabolismo , Receptores Purinérgicos P1/metabolismo , RNA Mensageiro/metabolismo , Retículo Sarcoplasmático/metabolismo
3.
JACC Basic Transl Sci ; 8(1): 1-15, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36777175

RESUMO

Analysis of the spatio-temporal distribution of calcium sparks showed a preferential increase in sparks near the sarcolemma in atrial myocytes from patients with atrial fibrillation (AF), linked to higher ryanodine receptor (RyR2) phosphorylation at s2808 and lower calsequestrin-2 levels. Mathematical modeling, incorporating modulation of RyR2 gating, showed that only the observed combinations of RyR2 phosphorylation and calsequestrin-2 levels can account for the spatio-temporal distribution of sparks in patients with and without AF. Furthermore, we demonstrate that preferential calcium release near the sarcolemma is key to a higher incidence and amplitude of afterdepolarizations in atrial myocytes from patients with AF.

4.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835078

RESUMO

Adenosine, an endogenous nucleoside, plays a critical role in maintaining homeostasis during stressful situations, such as energy deprivation or cellular damage. Therefore, extracellular adenosine is generated locally in tissues under conditions such as hypoxia, ischemia, or inflammation. In fact, plasma levels of adenosine in patients with atrial fibrillation (AF) are elevated, which also correlates with an increased density of adenosine A2A receptors (A2ARs) both in the right atrium and in peripheral blood mononuclear cells (PBMCs). The complexity of adenosine-mediated effects in health and disease requires simple and reproducible experimental models of AF. Here, we generate two AF models, namely the cardiomyocyte cell line HL-1 submitted to Anemonia toxin II (ATX-II) and a large animal model of AF, the right atrium tachypaced pig (A-TP). We evaluated the density of endogenous A2AR in those AF models. Treatment of HL-1 cells with ATX-II reduced cell viability, while the density of A2AR increased significantly, as previously observed in cardiomyocytes with AF. Next, we generated the animal model of AF based on tachypacing pigs. In particular, the density of the key calcium regulatory protein calsequestrin-2 was reduced in A-TP animals, which is consistent with the atrial remodelling shown in humans suffering from AF. Likewise, the density of A2AR in the atrium of the AF pig model increased significantly, as also shown in the biopsies of the right atrium of subjects with AF. Overall, our findings revealed that these two experimental models of AF mimicked the alterations in A2AR density observed in patients with AF, making them attractive models for studying the adenosinergic system in AF.


Assuntos
Fibrilação Atrial , Receptor A2A de Adenosina , Animais , Humanos , Adenosina/metabolismo , Fibrilação Atrial/metabolismo , Átrios do Coração/metabolismo , Leucócitos Mononucleares/metabolismo , Miócitos Cardíacos/metabolismo , Receptor A2A de Adenosina/metabolismo , Suínos
5.
Biomed Pharmacother ; 158: 114169, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36592495

RESUMO

AIMS: Atrial fibrillation (AF) has been associated with excessive spontaneous calcium release, linked to cyclic AMP (cAMP)-dependent phosphorylation of calcium regulatory proteins. Because ß-blockers are expected to attenuate cAMP-dependent signaling, we aimed to examine whether the treatment of patients with ß-blockers affected the incidence of spontaneous calcium release events or transient inward currents (ITI). METHODS: The impact of treatment with commonly used ß-blockers was analyzed in human atrial myocytes from 371 patients using patch-clamp technique, confocal calcium imaging or immunofluorescent labeling. Data were analyzed using multivariate regression analysis taking into account potentially confounding effects of relevant clinical factors RESULTS: The L-type calcium current (ICa) density was diminished significantly in patients with chronic but not paroxysmal AF and the treatment of patients with ß-blockers did not affect ICa density in any group. By contrast, the ITI frequency was elevated in patients with either paroxysmal or chronic AF that did not receive treatment, and ß-blocker treatment reduced the frequency to levels observed in patients without AF. Confocal calcium imaging showed that ß-blocker treatment also reduced the calcium spark frequency in patients with AF to levels observed in those without AF. Furthermore, phosphorylation of the ryanodine receptor (RyR2) at Ser-2808 and phospholamban at Ser-16 was significantly lower in patients with AF that received ß-blockers. CONCLUSION: Together, our findings demonstrate that ß-blocker treatment may be of therapeutic utility to prevent spontaneous calcium release-induced atrial electrical activity; especially in patients with a history of paroxysmal AF displaying preserved ICa density.


Assuntos
Antagonistas Adrenérgicos beta , Fibrilação Atrial , Cálcio , Humanos , Potenciais de Ação , Fibrilação Atrial/metabolismo , Cálcio/metabolismo , AMP Cíclico/metabolismo , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Antagonistas Adrenérgicos beta/farmacologia
6.
Nat Cardiovasc Res ; 2(12): 1291-1309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665938

RESUMO

Timothy syndrome 1 (TS1) is a multi-organ form of long QT syndrome associated with life-threatening cardiac arrhythmias, the organ-level dynamics of which remain unclear. In this study, we developed and characterized a novel porcine model of TS1 carrying the causative p.Gly406Arg mutation in CACNA1C, known to impair CaV1.2 channel inactivation. Our model fully recapitulated the human disease with prolonged QT interval and arrhythmic mortality. Electroanatomical mapping revealed the presence of a functional substrate vulnerable to reentry, stemming from an unforeseen constitutional slowing of cardiac activation. This signature substrate of TS1 was reliably identified using the reentry vulnerability index, which, we further demonstrate, can be used as a benchmark for assessing treatment efficacy, as shown by testing of multiple clinical and preclinical anti-arrhythmic compounds. Notably, in vitro experiments showed that TS1 cardiomyocytes display Ca2+ overload and decreased peak INa current, providing a rationale for the arrhythmogenic slowing of impulse propagation in vivo.

7.
Biomedicines ; 10(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35885069

RESUMO

A hallmark of atrial fibrillation is an excess of spontaneous calcium release events, which can be mimicked by ß1- or ß2-adrenergic stimulation. Because ß1-adrenergic receptor blockers (ß1-blockers) are primarily used in clinical practice, we here examined the impact of ß2-adrenergic stimulation on spontaneous calcium release and assessed whether the R- and S-enantiomers of the non-selective ß- blocker carvedilol could reverse these effects. For this purpose, human atrial myocytes were isolated from patients undergoing cardiovascular surgery and subjected to confocal calcium imaging or immunofluorescent labeling of the ryanodine receptor (RyR2). Interestingly, the ß2-adrenergic agonist fenoterol increased the incidence of calcium sparks and waves to levels observed with the non-specific ß-adrenergic agonist isoproterenol. Moreover, fenoterol increased both the amplitude and duration of the sparks, facilitating their fusion into calcium waves. Subsequent application of the non ß-blocking R-Carvedilol enantiomer reversed these effects of fenoterol in a dose-dependent manner. R-Carvedilol also reversed the fenoterol-induced phosphorylation of the RyR2 at Ser-2808 dose-dependently, and 1 µM of either R- or S-Carvedilol fully reversed the effect of fenoterol. Together, these findings demonstrate that ß2-adrenergic stimulation alone stimulates RyR2 phosphorylation at Ser-2808 and spontaneous calcium release maximally, and points to carvedilol as a tool to attenuate the pathological activation of ß2-receptors.

8.
Cardiovasc Res ; 118(4): 1033-1045, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33788918

RESUMO

AIMS: Atrial fibrillation (AF) has been associated with intracellular calcium disturbances in human atrial myocytes, but little is known about the potential influence of sex and we here aimed to address this issue. METHODS AND RESULTS: Alterations in calcium regulatory mechanisms were assessed in human atrial myocytes from patients without AF or with long-standing persistent or permanent AF. Patch-clamp measurements revealed that L-type calcium current (ICa) density was significantly smaller in males with than without AF (-1.15 ± 0.37 vs. -2.06 ± 0.29 pA/pF) but not in females with AF (-1.88 ± 0.40 vs. -2.21 ± 0.0.30 pA/pF). In contrast, transient inward currents (ITi) were more frequent in females with than without AF (1.92 ± 0.36 vs. 1.10 ± 0.19 events/min) but not in males with AF. Moreover, confocal calcium imaging showed that females with AF had more calcium spark sites than those without AF (9.8 ± 1.8 vs. 2.2 ± 1.9 sites/µm2) and sparks were wider (3.0 ± 0.3 vs. 2.2 ± 0.3 µm) and lasted longer (79 ± 6 vs. 55 ± 8 ms), favouring their fusion into calcium waves that triggers ITIs and afterdepolarizations. This was linked to higher ryanodine receptor phosphorylation at s2808 in women with AF, and inhibition of adenosine A2A or beta-adrenergic receptors that modulate s2808 phosphorylation was able to reduce the higher incidence of ITI in women with AF. CONCLUSION: Perturbations of the calcium homoeostasis in AF is sex-dependent, concurring with increased spontaneous SR calcium release-induced electrical activity in women but not in men, and with diminished ICa density in men only.


Assuntos
Fibrilação Atrial , Cálcio , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Feminino , Homeostase , Humanos , Masculino , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
9.
Acta Physiol (Oxf) ; 234(4): e13736, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34709723

RESUMO

AIMS: It is unknown how ß-adrenergic stimulation affects calcium dynamics in individual RyR2 clusters and leads to the induction of spontaneous calcium waves. To address this, we analysed spontaneous calcium release events in green fluorescent protein (GFP)-tagged RyR2 clusters. METHODS: Cardiomyocytes from mice with GFP-tagged RyR2 or human right atrial tissue were subjected to immunofluorescent labelling or confocal calcium imaging. RESULTS: Spontaneous calcium release from single RyR2 clusters induced 91.4% ± 2.0% of all calcium sparks while 8.0% ± 1.6% were caused by release from two neighbouring clusters. Sparks with two RyR2 clusters had 40% bigger amplitude, were 26% wider, and lasted 35% longer at half maximum. Consequently, the spark mass was larger in two- than one-cluster sparks with a median and interquartile range for the cumulative distribution of 15.7 ± 20.1 vs 7.6 ± 5.7 a.u. (P < .01). ß2-adrenergic stimulation increased RyR2 phosphorylation at s2809 and s2815, tripled the fraction of two- and three-cluster sparks, and significantly increased the spark mass. Interestingly, the amplitude and mass of the calcium released from a RyR2 cluster were proportional to the SR calcium load, but the firing rate was not. The spark mass was also higher in 33 patients with atrial fibrillation than in 36 without (22.9 ± 23.4 a.u. vs 10.7 ± 10.9; P = .015). CONCLUSIONS: Most sparks are caused by activation of a single RyR2 cluster at baseline while ß-adrenergic stimulation doubles the mass and the number of clusters per spark. This mimics the shift in the cumulative spark mass distribution observed in myocytes from patients with atrial fibrillation.


Assuntos
Fibrilação Atrial , Canal de Liberação de Cálcio do Receptor de Rianodina , Adrenérgicos , Animais , Fibrilação Atrial/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Humanos , Camundongos , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
10.
Cardiovasc Res ; 115(3): 578-589, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30219899

RESUMO

AIMS: Single nucleotide polymorphisms on chromosome 4q25 have been associated with risk of atrial fibrillation (AF) but the exiguous knowledge of the mechanistic links between these risk variants and underlying electrophysiological alterations hampers their clinical utility. Here, we tested the hypothesis that 4q25 risk variants cause alterations in the intracellular calcium homoeostasis that predispose to spontaneous electrical activity. METHODS AND RESULTS: Western blotting, confocal calcium imaging, and patch-clamp techniques were used to identify mechanisms linking the 4q25 risk variants rs2200733T and rs13143308T to defects in the calcium homoeostasis in human atrial myocytes. Our findings revealed that the rs13143308T variant was more frequent in patients with AF and that myocytes from carriers of this variant had a significantly higher density of calcium sparks (14.1 ± 4.5 vs. 3.1 ± 1.3 events/min, P = 0.02), frequency of transient inward currents (ITI) (1.33 ± 0.24 vs. 0.26 ± 0.09 events/min, P < 0.001) and incidence of spontaneous membrane depolarizations (1.22 ± 0.26 vs. 0.56 ± 0.17 events/min, P = 0.001) than myocytes from patients with the normal rs13143308G variant. These alterations were linked to higher sarcoplasmic reticulum calcium loading (10.2 ± 1.4 vs. 7.3 ± 0.5 amol/pF, P = 0.01), SERCA2 expression (1.37 ± 0.13 fold, P = 0.03), and RyR2 phosphorylation at ser2808 (0.67 ± 0.08 vs. 0.47 ± 0.03, P = 0.01) but not at ser2814 (0.28 ± 0.14 vs. 0.31 ± 0.14, P = 0.61) in patients carrying the rs13143308T risk variant. Furthermore, the presence of a risk variant or AF independently increased the ITI frequency and the increase in the ITI frequency observed in carriers of the risk variants was exacerbated in those with AF. By contrast, the presence of a risk variant did not affect the amplitude or properties of the L-type calcium current in patients with or without AF. CONCLUSIONS: Here, we identify the 4q25 variant rs13143308T as a genetic risk marker for AF, specifically associated with excessive calcium release and spontaneous electrical activity linked to increased SERCA2 expression and RyR2 phosphorylation.


Assuntos
Fibrilação Atrial/genética , Sinalização do Cálcio/genética , Cálcio/metabolismo , Cromossomos Humanos Par 4 , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Polimorfismo de Nucleotídeo Único , Potenciais de Ação/genética , Idoso , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Estudos de Casos e Controles , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Átrios do Coração/fisiopatologia , Frequência Cardíaca/genética , Homeostase , Humanos , Masculino , Miócitos Cardíacos/patologia , Fenótipo , Fosforilação , Fatores de Risco , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
11.
Basic Res Cardiol ; 111(1): 5, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26611209

RESUMO

Atrial fibrillation (AF) has been associated with increased spontaneous calcium release from the sarcoplasmic reticulum and linked to increased adenosine A2A receptor (A2AR) expression and activation. Here we tested whether this may favor atrial arrhythmogenesis by promoting beat-to-beat alternation and irregularity. Patch-clamp and confocal calcium imaging was used to measure the beat-to-beat response of the calcium current and transient in human atrial myocytes. Responses were classified as uniform, alternating or irregular and stimulation of Gs-protein coupled receptors decreased the frequency where a uniform response could be maintained from 1.0 ± 0.1 to 0.6 ± 0.1 Hz; p < 0.01 for beta-adrenergic receptors and from 1.4 ± 0.1 to 0.5 ± 0.1 Hz; p < 0.05 for A2ARs. The latter was linked to increased spontaneous calcium release and after-depolarizations. Moreover, A2AR activation increased the fraction of non-uniformly responding cells in HL-1 myocyte cultures from 19 ± 3 to 51 ± 9 %; p < 0.02, and electrical mapping in perfused porcine atria revealed that adenosine induced electrical alternans at longer cycle lengths, doubled the fraction of electrodes showing alternation, and increased the amplitude of alternations. Importantly, protein kinase A inhibition increased the highest frequency where uniform responses could be maintained from 0.84 ± 0.12 to 1.86 ± 0.11 Hz; p < 0.001 and prevention of A2AR-activation with exogenous adenosine deaminase selectively increased the threshold from 0.8 ± 0.1 to 1.2 ± 0.1 Hz; p = 0.001 in myocytes from patients with AF. In conclusion, A2AR-activation promotes beat-to-beat irregularities in the calcium transient in human atrial myocytes, and prevention of A2AR activation may be a novel means to maintain uniform beat-to-beat responses at higher beating frequencies in patients with atrial fibrillation.


Assuntos
Fibrilação Atrial/metabolismo , Átrios do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Receptor A2A de Adenosina/metabolismo , Animais , Células Cultivadas , Humanos , Microscopia Confocal , Técnicas de Patch-Clamp , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...