Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Struct Biol ; 212(3): 107645, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045383

RESUMO

Pyridoxal 5'-phosphate (PLP) is the active form of vitamin B6 and a cofactor for more than 140 enzymes. This coenzyme plays a pivotal role in catalysis of various enzymatic reactions that are critical for the survival of organisms. Entamoeba histolytica depends on the uptake of pyridoxal (PL), a B6 vitamer from the external environment which is then phosphorylated by pyridoxal kinase (EhPLK) to form PLP via the salvage pathway. E. histolytica cannot synthesise vitamin B6de-novo, and also lacks pyridoxine 5'-phosphate oxidase, a salvage pathway enzyme required to produce PLP from pyridoxine phosphate (PNP) and pyridoxamine phosphate (PMP). Analysing the importance of PLK in E. histolytica, we have determined the high-resolution crystal structures of the dimeric pyridoxal kinase in apo, ADP-bound, and PLP-bound states. These structures provided a snapshot of the transition state and help in understanding the reaction mechanism in greater detail. The EhPLK structure significantly differed from the human homologue at its PLP binding site, and the phylogenetic study also revealed its divergence from human PLK. Further, gene regulation of EhPLK using sense and antisense RNA showed that any change in optimal level is harmful to the pathogen. Biochemical and in vivo studies unveiled EhPLK to be essential for this pathogen, while the molecular differences with human PLK structure can be exploited for the structure-guided design of EhPLK inhibitors.


Assuntos
Entamoeba histolytica/metabolismo , Piridoxal Quinase/metabolismo , Sítios de Ligação/fisiologia , Catálise , Fosforilação/fisiologia , Filogenia , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/metabolismo , Piridoxamina/análogos & derivados , Piridoxamina/metabolismo , Piridoxaminafosfato Oxidase/metabolismo , Vitamina B 6/metabolismo
2.
Mol Microbiol ; 112(2): 718-739, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31132312

RESUMO

O-acetylserine sulfhydrylase (OASS) and cystathionine ß-synthase (CBS) are members of the PLP-II family, and involved in L-cysteine production. OASS produces L-cysteine via a de novo pathway while CBS participates in the reverse transsulfuration pathway. O-acetylserine-dependent CBS (OCBS) was previously identified as a new member of the PLP-II family, which are predominantly seen in bacteria. The bacterium Helicobacter pylori possess only one OASS (hp0107) gene and we showed that the protein coded by this gene actually functions as an OCBS and utilizes L-homocysteine and O-acetylserine (OAS) to produce cystathionine. HpOCBS did not show CBS activity with the substrate L-serine and required OAS exclusively. The HpOCBS structure in complex with methionine showed a closed cleft state, explaining the initial mode of substrate binding. Sequence and structural analyses showed differences between the active sites of OCBS and CBS, and explain their different substrate preferences. We identified three hydrophobic residues near the active site of OCBS, corresponding to one serine and two tyrosine residues in CBSs. Mutational studies were performed on HpOCBS and Saccharomyces cerevisiae CBS. A ScCBS double mutant (Y158F/Y226V) did not display activity with L-serine, indicating indispensability of these polar residues for selecting substrate L-serine, however, did show activity with OAS.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cistationina beta-Sintase/química , Cistationina beta-Sintase/metabolismo , Helicobacter pylori/enzimologia , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Cistationina/metabolismo , Cistationina beta-Sintase/genética , Estabilidade Enzimática , Helicobacter pylori/química , Helicobacter pylori/genética , Homocisteína/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Metionina/metabolismo , Serina/análogos & derivados , Serina/metabolismo , Especificidade por Substrato
3.
Sci Rep ; 6: 31181, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27499105

RESUMO

Helicobacter pylori, a gram-negative and microaerophilic bacterium, is the major cause of chronic gastritis, gastric ulcers and gastric cancer. Owing to its central role, DNA replication machinery has emerged as a prime target for the development of antimicrobial drugs. Here, we report 2Å structure of ß-clamp from H. pylori (Hpß-clamp), which is one of the critical components of DNA polymerase III. Despite of similarity in the overall fold of eubacterial ß-clamp structures, some distinct features in DNA interacting loops exists that have not been reported previously. The in silico prediction identified the potential binders of ß-clamp such as alpha subunit of DNA pol III and DNA ligase with identification of ß-clamp binding regions in them and validated by SPR studies. Hpß-clamp interacts with DNA ligase in micromolar binding affinity. Moreover, we have successfully determined the co-crystal structure of ß-clamp with peptide from DNA ligase (not reported earlier in prokaryotes) revealing the region from ligase that interacts with ß-clamp.


Assuntos
Proteínas de Bactérias/química , DNA Ligases/química , Helicobacter pylori/enzimologia , Cristalografia por Raios X , Domínios Proteicos , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
4.
Arch Biochem Biophys ; 540(1-2): 101-16, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24184422

RESUMO

Sodium dodecyl sulfate, a biological membrane mimetic, can be used to study the conversion of globular proteins into amyloid fibrils in vitro. Using multiple approaches, the effect of SDS was examined on stem bromelain (SB), a widely recognized therapeutic protein. SB is known to exist as a partially folded intermediate at pH 2.0, situation also encountered in the gastrointestinal tract (its site of absorption). In the presence of sub-micellar SDS concentration (500-1000 µM), this intermediate was found to exhibit great propensity to form large-sized ß-sheeted aggregates with fibrillar morphology, the hall marks of amyloid structure. We also observed inhibition of fibrillation by two naphthalene-based compounds, ANS and bis-ANS. While bis-ANS significantly inhibited fibril formation at 50 µM, ANS did so at relatively higher concentration (400 µM). Alcohols, but not salts, were found to weaken the inhibitory action of these compounds suggesting the possible involvement of hydrophobic interactions in their binding to protein. Besides, isothermal titration calorimetry and molecular docking studies suggested that inhibition of fibrillation by these naphthalene derivatives is mediated not just through hydrophobic forces, but also by disruption of π-π interactions between the aromatic residues together with the inter-polypeptide chain repulsion among negatively charged ANS/bis-ANS bound SB.


Assuntos
Bromelaínas/química , Naftalenos/química , Naftalenos/farmacologia , Multimerização Proteica/efeitos dos fármacos , Dodecilsulfato de Sódio/análogos & derivados , Dodecilsulfato de Sódio/farmacologia , Álcoois/farmacologia , Bromelaínas/metabolismo , Soluções Tampão , Relação Dose-Resposta a Droga , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Micelas , Simulação de Acoplamento Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...