Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(6): 104752, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37100288

RESUMO

Homologs of the protein Get3 have been identified in all domains yet remain to be fully characterized. In the eukaryotic cytoplasm, Get3 delivers tail-anchored (TA) integral membrane proteins, defined by a single transmembrane helix at their C terminus, to the endoplasmic reticulum. While most eukaryotes have a single Get3 gene, plants are notable for having multiple Get3 paralogs. Get3d is conserved across land plants and photosynthetic bacteria and includes a distinctive C-terminal α-crystallin domain. After tracing the evolutionary origin of Get3d, we solve the Arabidopsis thaliana Get3d crystal structure, identify its localization to the chloroplast, and provide evidence for a role in TA protein binding. The structure is identical to that of a cyanobacterial Get3 homolog, which is further refined here. Distinct features of Get3d include an incomplete active site, a "closed" conformation in the apo-state, and a hydrophobic chamber. Both homologs have ATPase activity and are capable of binding TA proteins, supporting a potential role in TA protein targeting. Get3d is first found with the development of photosynthesis and conserved across 1.2 billion years into the chloroplasts of higher plants across the evolution of photosynthesis suggesting a role in the homeostasis of photosynthetic machinery.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fotossíntese , Adenosina Trifosfatases/metabolismo , Embriófitas , Retículo Endoplasmático/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
Plant Physiol ; 188(1): 56-69, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34718789

RESUMO

Studying the developmental genetics of plant organs requires following gene expression in specific tissues. To facilitate this, we have developed dual expression anatomy lines, which incorporate a red plasma membrane marker alongside a fluorescent reporter for a gene of interest in the same vector. Here, we adapted the GreenGate cloning vectors to create two destination vectors showing strong marking of cell membranes in either the whole root or specifically in the lateral roots. This system can also be used in both embryos and whole seedlings. As proof of concept, we follow both gene expression and anatomy in Arabidopsis (Arabidopsis thaliana) during lateral root organogenesis for a period of over 24 h. Coupled with the development of a flow cell and perfusion system, we follow changes in activity of the DII auxin sensor following application of auxin.


Assuntos
Arabidopsis/genética , Arabidopsis/ultraestrutura , Membrana Celular/ultraestrutura , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/ultraestrutura , Ultrassonografia/métodos , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genes Reporter
3.
Mol Plant ; 12(10): 1338-1352, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31176773

RESUMO

Cytokinins and ethylene control plant development via sensors from the histidine kinase (HK) family. However, downstream signaling pathways for the key phytohormones are distinct. Here we report that not only cytokinin but also ethylene is able to control root apical meristem (RAM) size through activation of the multistep phosphorelay (MSP) pathway. We found that both cytokinin and ethylene-dependent RAM shortening requires ethylene binding to ETR1 and the HK activity of ETR1. The receiver domain of ETR1 interacts with MSP signaling intermediates acting downstream of cytokinin receptors, further substantiating the role of ETR1 in MSP signaling. We revealed that both cytokinin and ethylene induce the MSP in similar and distinct cell types with ETR1-mediated ethylene signaling controlling MSP output specifically in the root transition zone. We identified members of the MSP pathway specific and common to both hormones and showed that ETR1-regulated ARR3 controls RAM size. ETR1-mediated MSP spatially differs from canonical CTR1/EIN2/EIN3 ethylene signaling and is independent of EIN2, indicating that both pathways can be spatially and functionally separated. Furthermore, we demonstrated that canonical ethylene signaling controls MSP responsiveness to cytokinin specifically in the root transition zone, presumably via regulation of ARR10, one of the positive regulators of MSP signaling in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Citocininas/farmacologia , Etilenos/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Receptores de Superfície Celular/metabolismo , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Citocininas/metabolismo , Relação Dose-Resposta a Droga , Etilenos/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
4.
Nat Commun ; 10(1): 1786, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992430

RESUMO

Acquisition of pluripotency by somatic cells is a striking process that enables multicellular organisms to regenerate organs. This process includes silencing of genes to erase original tissue memory and priming of additional cell type specification genes, which are then poised for activation by external signal inputs. Here, through analysis of genome-wide histone modifications and gene expression profiles, we show that a gene priming mechanism involving LYSINE-SPECIFIC DEMETHYLASE 1-LIKE 3 (LDL3) specifically eliminates H3K4me2 during formation of the intermediate pluripotent cell mass known as callus derived from Arabidopsis root cells. While LDL3-mediated H3K4me2 removal does not immediately affect gene expression, it does facilitate the later activation of genes that act to form shoot progenitors when external cues lead to shoot induction. These results give insights into the role of H3K4 methylation in plants, and into the primed state that provides plant cells with high regenerative competency.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Código das Histonas/fisiologia , Histona Desmetilases/metabolismo , Brotos de Planta/fisiologia , Regeneração , Proteínas de Arabidopsis/genética , Desmetilação , Epigênese Genética/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Histona Desmetilases/genética , Histonas/metabolismo , Células Vegetais/fisiologia , Brotos de Planta/citologia , Plantas Geneticamente Modificadas , Processamento de Proteína Pós-Traducional/fisiologia
5.
Nat Commun ; 10(1): 726, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760714

RESUMO

In plants mechanical signals pattern morphogenesis through the polar transport of the hormone auxin and through regulation of interphase microtubule (MT) orientation. To date, the mechanisms by which such signals induce changes in cell polarity remain unknown. Through a combination of time-lapse imaging, and chemical and mechanical perturbations, we show that mechanical stimulation of the SAM causes transient changes in cytoplasmic calcium ion concentration (Ca2+) and that transient Ca2+ response is required for downstream changes in PIN-FORMED 1 (PIN1) polarity. We also find that dynamic changes in Ca2+ occur during development of the SAM and this Ca2+ response is required for changes in PIN1 polarity, though not sufficient. In contrast, we find that Ca2+ is not necessary for the response of MTs to mechanical perturbations revealing that Ca2+ specifically acts downstream of mechanics to regulate PIN1 polarity response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Polaridade Celular/fisiologia , Ácidos Indolacéticos/metabolismo , Transporte Proteico/fisiologia , Nicho de Células-Tronco/fisiologia , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Transporte Biológico , Membrana Celular/metabolismo , Interfase/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Microtúbulos/metabolismo , Morfogênese , Caules de Planta/metabolismo
6.
Dev Cell ; 47(1): 53-66.e5, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30197241

RESUMO

Coordinated growth of organs requires communication among cells within and between tissues. In plants, leaf growth is largely dictated by the epidermis; here, asymmetric and self-renewing divisions of the stomatal lineage create two essential cell types-pavement cells and guard cells-in proportions reflecting inputs from local, systemic, and environmental cues. The transcription factor SPEECHLESS (SPCH) is the prime regulator of divisions, but whether and how it is influenced by external cues to provide flexible development is enigmatic. Here, we show that the phytohormone cytokinin (CK) can act as an endogenous signal to affect the extent and types of stomatal lineage divisions and forms a regulatory circuit with SPCH. Local domains of low CK signaling are created by SPCH-dependent cell-type-specific activity of two repressive type-A ARABIDOPSIS RESPONSE REGULATORs (ARRs), ARR16 and ARR17, and two secreted peptides, CLE9 and CLE10, which, together with SPCH, can customize epidermal cell-type composition.


Assuntos
Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Citocininas/metabolismo , Estômatos de Plantas/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Linhagem da Célula , Citocininas/genética , Regulação da Expressão Gênica de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Fatores de Transcrição/metabolismo
7.
Development ; 142(6): 1043-9, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25758219

RESUMO

The CLAVATA3 (CLV3)-CLAVATA1 (CLV1) ligand-receptor kinase pair negatively regulates shoot stem cell proliferation in plants. clv1 null mutants are weaker in phenotype than clv3 mutants, but the clv1 null phenotype is enhanced by mutations in the related receptor kinases BARELY ANY MERISTEM 1, 2 and 3 (BAM1, 2 and 3). The basis of this genetic redundancy is unknown. Here, we demonstrate that the apparent redundancy in the CLV1 clade is in fact due to the transcriptional repression of BAM genes by CLV1 signaling. CLV1 signaling in the rib meristem (RM) of the shoot apical meristem is necessary and sufficient for stem cell regulation. CLV3-CLV1 signaling in the RM represses BAM expression in wild-type Arabidopsis plants. In clv1 mutants, ectopic BAM expression in the RM partially complements the loss of CLV1. BAM regulation by CLV1 is distinct from CLV1 regulation of WUSCHEL, a proposed CLV1 target gene. In addition, quadruple receptor mutants are stronger in phenotype than clv3, pointing to the existence of additional CLV1/BAM ligands. These data provide an explanation for the genetic redundancy seen in the CLV1 clade and reveal a novel feedback operating in the control of plant stem cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Proliferação de Células/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proliferação de Células/genética , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas/genética , Vetores Genéticos/genética , Genótipo , Proteínas de Homeodomínio/metabolismo , Microscopia Confocal , Mutação/genética , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética
8.
Nature ; 517(7534): 377-80, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25363783

RESUMO

Plant stem cells in the shoot apical meristem (SAM) and root apical meristem are necessary for postembryonic development of aboveground tissues and roots, respectively, while secondary vascular stem cells sustain vascular development. WUSCHEL (WUS), a homeodomain transcription factor expressed in the rib meristem of the Arabidopsis SAM, is a key regulatory factor controlling SAM stem cell populations, and is thought to establish the shoot stem cell niche through a feedback circuit involving the CLAVATA3 (CLV3) peptide signalling pathway. WUSCHEL-RELATED HOMEOBOX 5 (WOX5), which is specifically expressed in the root quiescent centre, defines quiescent centre identity and functions interchangeably with WUS in the control of shoot and root stem cell niches. WOX4, expressed in Arabidopsis procambial cells, defines the vascular stem cell niche. WUS/WOX family proteins are evolutionarily and functionally conserved throughout the plant kingdom and emerge as key actors in the specification and maintenance of stem cells within all meristems. However, the nature of the genetic regime in stem cell niches that centre on WOX gene function has been elusive, and molecular links underlying conserved WUS/WOX function in stem cell niches remain unknown. Here we demonstrate that the Arabidopsis HAIRY MERISTEM (HAM) family of transcription regulators act as conserved interacting cofactors with WUS/WOX proteins. HAM and WUS share common targets in vivo and their physical interaction is important in driving downstream transcriptional programs and in promoting shoot stem cell proliferation. Differences in the overlapping expression patterns of WOX and HAM family members underlie the formation of diverse stem cell niche locations, and the HAM family is essential for all of these stem cell niches. These findings establish a new framework for the control of stem cell production during plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Células-Tronco/citologia , Células-Tronco/metabolismo , Transcrição Gênica , Arabidopsis/genética , Proliferação de Células , Histona Acetiltransferases/metabolismo , Proteínas de Homeodomínio/metabolismo , Brotos de Planta/citologia , Brotos de Planta/genética , Ligação Proteica , Nicho de Células-Tronco
9.
Plant Physiol ; 161(3): 1066-75, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23355633

RESUMO

Cytokinins are classic plant hormones that orchestrate plant growth, development, and physiology. They affect gene expression in target cells by activating a multistep phosphorelay network. Type-B response regulators, acting as transcriptional activators, mediate the final step in the signaling cascade. Previously, we have introduced a synthetic reporter, Two Component signaling Sensor (TCS)::green fluorescent protein (GFP), which reflects the transcriptional activity of type-B response regulators. TCS::GFP was instrumental in uncovering roles of cytokinin and deepening our understanding of existing functions. However, TCS-mediated expression of reporters is weak in some developmental contexts where cytokinin signaling has a documented role, such as in the shoot apical meristem or in the vasculature of Arabidopsis (Arabidopsis thaliana). We also observed that GFP expression becomes rapidly silenced in TCS::GFP transgenic plants. Here, we present an improved version of the reporter, TCS new (TCSn), which, compared with TCS, is more sensitive to phosphorelay signaling in Arabidopsis and maize (Zea mays) cellular assays while retaining its specificity. Transgenic Arabidopsis TCSn::GFP plants exhibit strong and dynamic GFP expression patterns consistent with known cytokinin functions. In addition, GFP expression has been stable over generations, allowing for crosses with different genetic backgrounds. Thus, TCSn represents a significant improvement to report the transcriptional output profile of phosphorelay signaling networks in Arabidopsis, maize, and likely other plants that display common response regulator DNA-binding specificities.


Assuntos
Arabidopsis/metabolismo , Citocininas/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética , Transcrição Gênica , Zea mays/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Biologia Computacional , Sequência Consenso/genética , Regulação da Expressão Gênica de Plantas , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Fosforilação , Proteínas de Plantas/genética , Plântula/metabolismo , Fatores de Transcrição/metabolismo , Transfecção , Zea mays/genética
10.
Plant Cell ; 24(8): 3186-92, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22923673

RESUMO

The Arabidopsis thaliana leucine-rich repeat receptor kinase FLAGELLIN SENSING2 (FLS2) is required for the recognition of bacterial flagellin in innate immunity. Recently, FLS2 was proposed to act as a multispecific receptor recognizing unrelated exogenous and endogenous peptide ligands, including CLAVATA3 (CLV3), a key regulator of shoot meristem stem cell production. Here, we report experimental evidence demonstrating that FLS2 does not recognize CLV3 and that the shoot apical meristem is immune to bacteria independently of CLV3 perception.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Meristema/metabolismo , Imunidade Vegetal , Brotos de Planta/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Ativação Enzimática , Proteínas de Fluorescência Verde/metabolismo , Interações Hospedeiro-Patógeno , Ligantes , Meristema/imunologia , Meristema/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Brotos de Planta/imunologia , Brotos de Planta/microbiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/microbiologia , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/imunologia , Pseudomonas syringae/imunologia , Pseudomonas syringae/patogenicidade , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo
11.
Methods Cell Biol ; 110: 285-323, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22482954

RESUMO

Quantitative studies in plant developmental biology require monitoring and measuring the changes in cells and tissues as growth gives rise to intricate patterns. The success of these studies has been amplified by the combined strengths of two complementary techniques, namely live imaging and computational image analysis. Live imaging records time-lapse images showing the spatial-temporal progress of tissue growth with cells dividing and changing shape under controlled laboratory experiments. Image processing and analysis make sense of these data by providing computational ways to extract and interpret quantitative developmental information present in the acquired images. Manual labeling and qualitative interpretation of images are limited as they don't scale well to large data sets and cannot provide field measurements to feed into mathematical and computational models of growth and patterning. Computational analysis, when it can be made sufficiently accurate, is more efficient, complete, repeatable, and less biased. In this chapter, we present some guidelines for the acquisition and processing of images of sepals and the shoot apical meristem of Arabidopsis thaliana to serve as a basis for modeling. We discuss fluorescent markers and imaging using confocal laser scanning microscopy as well as present protocols for doing time-lapse live imaging and static imaging of living tissue. Image segmentation and tracking are discussed. Algorithms are presented and demonstrated together with low-level image processing methods that have proven to be essential in the detection of cell contours. We illustrate the application of these procedures in investigations aiming to unravel the mechanical and biochemical signaling mechanisms responsible for the coordinated growth and patterning in plants.


Assuntos
Arabidopsis/ultraestrutura , Processamento de Imagem Assistida por Computador/métodos , Plantas Geneticamente Modificadas/ultraestrutura , Transdução de Sinais/fisiologia , Imagem com Lapso de Tempo/métodos , Algoritmos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Flores/crescimento & desenvolvimento , Flores/ultraestrutura , Corantes Fluorescentes , Regulação da Expressão Gênica de Plantas , Meristema/crescimento & desenvolvimento , Meristema/ultraestrutura , Microscopia Confocal , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/ultraestrutura , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
12.
Proc Natl Acad Sci U S A ; 109(10): 4002-7, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22345559

RESUMO

The transcription factor WUSCHEL (WUS) acts from a well-defined domain within the Arabidopsis thaliana shoot apical meristem (SAM) to maintain a stem cell niche. A negative-feedback loop involving the CLAVATA (CLV) signaling pathway regulates the number of WUS-expressing cells and provides the current paradigm for the homeostatic maintenance of stem cell numbers. Despite the continual turnover of cells in the SAM during development, the WUS domain remains patterned at a fixed distance below the shoot apex. Recent work has uncovered a positive-feedback loop between WUS function and the plant hormone cytokinin. Furthermore, loss of function of the cytokinin biosynthetic gene, LONELY GUY (LOG), results in a wus-like phenotype in rice. Herein, we find the Arabidopsis LOG4 gene is expressed in the SAM epidermis. We use this to develop a computational model representing a growing SAM to suggest the plausibility that apically derived cytokinin and CLV signaling, together, act as positional cues for patterning the WUS domain within the stem cell niche. Furthermore, model simulations backed by experimental data suggest a previously unknown negative feedback between WUS function and cytokinin biosynthesis in the Arabidopsis SAM epidermis. These results suggest a plausible dynamic feedback principle by which the SAM stem cell niche is patterned.


Assuntos
Arabidopsis/metabolismo , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo , Brotos de Planta/metabolismo , Proteínas de Arabidopsis/genética , Divisão Celular , Simulação por Computador , Microscopia Confocal/métodos , Modelos Biológicos , Modelos Teóricos , Transdução de Sinais , Células-Tronco/citologia
14.
Nat Rev Mol Cell Biol ; 12(4): 265-73, 2011 04.
Artigo em Inglês | MEDLINE | ID: mdl-21364682

RESUMO

The emerging field of computational morphodynamics aims to understand the changes that occur in space and time during development by combining three technical strategies: live imaging to observe development as it happens; image processing and analysis to extract quantitative information; and computational modelling to express and test time-dependent hypotheses. The strength of the field comes from the iterative and combined use of these techniques, which has provided important insights into plant development.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Desenvolvimento Vegetal , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Cinética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Plantas/genética , Plantas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo
15.
Curr Biol ; 21(5): 345-52, 2011 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-21333538

RESUMO

BACKGROUND: Cell numbers in above-ground meristems of plants are thought to be maintained by a feedback loop driven by perception of the glycopeptide ligand CLAVATA3 (CLV3) by the CLAVATA1 (CLV1) receptor kinase and the CLV2/CORYNE (CRN) receptor-like complex. CLV3 produced in the stem cells at the meristem apex limits the expression level of the stem cell-promoting homeodomain protein WUSCHEL (WUS) in the cells beneath, where CLV1 and WUS RNA are localized. WUS downregulation nonautonomously reduces stem cell proliferation. Overexpression of CLV3 eliminates the stem cells, causing meristem termination, and loss of CLV3 function allows meristem overproliferation. There are many questions regarding the CLV3/CLV1 interaction, including where in the meristem it occurs, how it is regulated, and how it is that a large range of CLV3 concentrations gives no meristem size phenotype. RESULTS: Here we use genetics and live imaging to examine the cell biology of CLV1 in Arabidopsis meristematic tissue. We demonstrate that plasma membrane-localized CLV1 is reduced in concentration by CLV3, which causes trafficking of CLV1 to lytic vacuoles. We find that changes in CLV2 activity have no detectable effects on CLV1 levels. We also find that CLV3 appears to diffuse broadly in meristems, contrary to a recent sequestration model. CONCLUSIONS: This study provides a new model for CLV1 function in plant stem cell maintenance and suggests that downregulation of plasma membrane-localized CLV1 by its CLV3 ligand can account for the buffering of CLV3 signaling in the maintenance of stem cell pools in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Meristema/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , Arabidopsis/metabolismo , Proliferação de Células , Eletroforese em Gel de Poliacrilamida , Vetores Genéticos/genética , Proteínas de Homeodomínio/metabolismo , Meristema/metabolismo , Microscopia Confocal , Proteínas Serina-Treonina Quinases , Transporte Proteico/fisiologia
16.
Annu Rev Plant Biol ; 61: 65-87, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20192756

RESUMO

Computational morphodynamics utilizes computer modeling to understand the development of living organisms over space and time. Results from biological experiments are used to construct accurate and predictive models of growth. These models are then used to make novel predictions that provide further insight into the processes involved, which can be tested experimentally to either confirm or rule out the validity of the computational models. This review highlights two fundamental challenges: (a) to understand the feedback between mechanics of growth and chemical or molecular signaling, and (b) to design models that span and integrate single cell behavior with tissue development. We review different approaches to model plant growth and discuss a variety of model types that can be implemented to demonstrate how the interplay between computational modeling and experimentation can be used to explore the morphodynamics of plant development.


Assuntos
Modelos Biológicos , Desenvolvimento Vegetal , Retroalimentação , Microscopia Confocal , Plantas/anatomia & histologia , Transdução de Sinais
17.
J Lipid Res ; 51(1): 169-81, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19633360

RESUMO

ABCG1 and ABCG4 are highly homologous members of the ATP binding cassette (ABC) transporter family that regulate cellular cholesterol homeostasis. In adult mice, ABCG1 is known to be expressed in numerous cell types and tissues, whereas ABCG4 expression is limited to the central nervous system (CNS). Here, we show significant differences in expression of these two transporters during development. Examination of beta-galactosidase-stained tissue sections from Abcg1(-/-)LacZ and Abcg4(-/-)LacZ knockin mice shows that ABCG4 is highly but transiently expressed both in hematopoietic cells and in enterocytes during development. In contrast, ABCG1 is expressed in macrophages and in endothelial cells of both embryonic and adult liver. We also show that ABCG1 and ABCG4 are both expressed as early as E12.5 in the embryonic eye and developing CNS. Loss of both ABCG1 and ABCG4 results in accumulation in the retina and/or brain of oxysterols, in altered expression of liver X receptor and sterol-regulatory element binding protein-2 target genes, and in a stress response gene. Finally, behavioral tests show that Abcg4(-/-) mice have a general deficit in associative fear memory. Together, these data indicate that loss of ABCG1 and/or ABCG4 from the CNS results in changes in metabolic pathways and in behavior.


Assuntos
Transportadores de Cassetes de Ligação de ATP/biossíntese , Envelhecimento/metabolismo , Sistema Nervoso Central/metabolismo , Embrião de Mamíferos/metabolismo , Lipoproteínas/biossíntese , Retina/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Envelhecimento/genética , Animais , Comportamento Animal , Encéfalo/embriologia , Encéfalo/metabolismo , Sistema Nervoso Central/citologia , Sistema Nervoso Central/embriologia , Condicionamento Clássico , Medo , Regulação da Expressão Gênica no Desenvolvimento , Lipoproteínas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Retina/embriologia , Retina/ultraestrutura , beta-Galactosidase/genética
18.
Biochim Biophys Acta ; 1791(7): 584-93, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19416657

RESUMO

Every cell is separated from its external environment by a lipid membrane. Survival depends on the regulated and selective transport of nutrients, waste products and regulatory molecules across these membranes, a process that is often mediated by integral membrane proteins. The largest and most diverse of these membrane transport systems is the ATP binding cassette (ABC) family of membrane transport proteins. The ABC family is a large evolutionary conserved family of transmembrane proteins (>250 members) present in all phyla, from bacteria to Homo sapiens, which require energy in the form of ATP hydrolysis to transport substrates against concentration gradients. In prokaryotes the majority of ABC transporters are involved in the transport of nutrients and other macromolecules into the cell. In eukaryotes, with the exception of the cystic fibrosis transmembrane conductance regulator (CFTR/ABCC7), ABC transporters mobilize substrates from the cytoplasm out of the cell or into specific intracellular organelles. This review focuses on the members of the ABCG subfamily of transporters, which are conserved through evolution in multiple taxa. As discussed below, these proteins participate in multiple cellular homeostatic processes, and functional mutations in some of them have clinical relevance in humans.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/classificação , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico , Lipoproteínas/genética , Lipoproteínas/metabolismo , Lipoproteínas/fisiologia , Camundongos , Camundongos Knockout
19.
J Lipid Res ; 49(1): 169-82, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17916878

RESUMO

Here, we describe the initial characterization of Abcg4(-/-) mice and identify overlapping functions of ABCG4 and ABCG1 in the brain. Histological examination of tissues from Abcg4(+/-)/nlsLacZ and Abcg1(+/-)/nlsLacZ mice demonstrates that coexpression of Abcg4 and Abcg1 is restricted to neurons and astrocytes of the central nervous system (CNS). Interestingly, Abcg4 mRNA is undetectable outside the CNS, in contrast with the broad tissue and cellular expression of Abcg1. We also used primary astrocytes, microglia, neurons, and macrophages to demonstrate that the expression of Abcg1, but not Abcg4, is induced after the activation of liver X receptor. Cellular localization studies demonstrated that both proteins reside in RhoB-positive endocytic vesicle membranes. Furthermore, overexpression of either ABCG1 or ABCG4 increased the processing of sterol-regulatory element binding protein 2 (SREBP-2) to the transcriptionally active protein, thus accounting for the observed increase in the expression of SREBP-2 target genes and cholesterol synthesis. Consistent with these latter results, we show that the expression levels of the same SREBP-2 target genes are repressed in the brains of Abcg1(-/-) and, to a lesser extent, Abcg4(-/-) mice. Based on the results of the current study, we propose that ABCG1 and ABCG4 mediate the intracellular vesicular transport of cholesterol/sterols within both neurons and astrocytes to regulate cholesterol transport in the brain.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Lipoproteínas/metabolismo , Neurônios/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Astrócitos/citologia , Encéfalo/citologia , Colesterol/biossíntese , Proteínas de Ligação a DNA/metabolismo , Endossomos/metabolismo , Metabolismo dos Lipídeos , Receptores X do Fígado , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Receptores Nucleares Órfãos , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
20.
Cell ; 120(2): 261-73, 2005 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-15680331

RESUMO

The PGC-1 family of coactivators stimulates the activity of certain transcription factors and nuclear receptors. Transcription factors in the sterol responsive element binding protein (SREBP) family are key regulators of the lipogenic genes in the liver. We show here that high-fat feeding, which induces hyperlipidemia and atherogenesis, stimulates the expression of both PGC-1beta and SREBP1c and 1a in liver. PGC-1beta coactivates the SREBP transcription factor family and stimulates lipogenic gene expression. Further, PGC-1beta is required for SREBP-mediated lipogenic gene expression. However, unlike SREBP itself, PGC-1beta reduces fat accumulation in the liver while greatly increasing circulating triglycerides and cholesterol in VLDL particles. The stimulation of lipoprotein transport upon PGC-1beta expression is likely due to the simultaneous coactivation of the liver X receptor, LXRalpha, a nuclear hormone receptor with known roles in hepatic lipid transport. These data suggest a mechanism through which dietary saturated fats can stimulate hyperlipidemia and atherogenesis.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/biossíntese , Proteínas de Ligação a DNA/biossíntese , Gorduras na Dieta/administração & dosagem , Regulação da Expressão Gênica/fisiologia , Hiperlipidemias/metabolismo , Transativadores/biossíntese , Fatores de Transcrição/biossíntese , Animais , Colesterol/metabolismo , Gorduras na Dieta/metabolismo , Perfilação da Expressão Gênica , Fígado/metabolismo , Receptores X do Fígado , Masculino , Camundongos , Receptores Nucleares Órfãos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Receptores Citoplasmáticos e Nucleares/biossíntese , Proteína de Ligação a Elemento Regulador de Esterol 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...