Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 7: 11316, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27121947

RESUMO

Polycomb repressive complex 2 (PRC2) silences gene expression through trimethylation of K27 of histone H3 (H3K27me3) via its catalytic SET domain. A missense mutation in the substrate of PRC2, histone H3K27M, is associated with certain pediatric brain cancers and is linked to a global decrease of H3K27me3 in the affected cells thought to be mediated by inhibition of PRC2 activity. We present here the crystal structure of human PRC2 in complex with the inhibitory H3K27M peptide bound to the active site of the SET domain, with the methionine residue located in the pocket that normally accommodates the target lysine residue. The structure and binding studies suggest a mechanism for the oncogenic inhibition of H3K27M. The structure also reveals how binding of repressive marks, like H3K27me3, to the EED subunit of the complex leads to enhancement of the catalytic efficiency of the SET domain and thus the propagation of this repressive histone modification.


Assuntos
Histonas/química , Lisina/química , Complexo Repressor Polycomb 2/química , Domínios Proteicos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Carcinogênese/genética , Domínio Catalítico , Cristalografia por Raios X , Proteína Potenciadora do Homólogo 2 de Zeste/química , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Metilação , Modelos Moleculares , Mutação , Oncogenes/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Ligação Proteica
2.
Structure ; 15(11): 1467-81, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17997972

RESUMO

Ndel1 and Nde1 are homologous and evolutionarily conserved proteins, with critical roles in cell division, neuronal migration, and other physiological phenomena. These functions are dependent on their interactions with the retrograde microtubule motor dynein and with its regulator Lis1--a product of the causal gene for isolated lissencephaly sequence (ILS) and Miller-Dieker lissencephaly. The molecular basis of the interactions of Ndel1 and Nde1 with Lis1 is not known. Here, we present a crystallographic study of two fragments of the coiled-coil domain of Ndel1, one of which reveals contiguous high-quality electron density for residues 10-166, the longest such structure reported by X-ray diffraction at high resolution. Together with complementary solution studies, our structures reveal how the Ndel1 coiled coil forms a stable parallel homodimer and suggest mechanisms by which the Lis1-interacting domain can be regulated to maintain a conformation in which two supercoiled alpha helices cooperatively bind to a Lis1 homodimer.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/química , Proteínas de Transporte/química , Proteínas Associadas aos Microtúbulos/química , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Dicroísmo Circular , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/metabolismo , Cristalografia por Raios X , Dimerização , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
3.
Mol Cell Proteomics ; 6(12): 2200-11, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17921176

RESUMO

Most protein complexes are inaccessible to high resolution structural analysis. We report the results of a combined approach of cross-linking, mass spectrometry, and bioinformatics to two human complexes containing large coiled-coil segments, the NDEL1 homodimer and the NDC80 heterotetramer. An important limitation of the cross-linking approach, so far, was the identification of cross-linked peptides from fragmentation spectra. Our novel approach overcomes the data analysis bottleneck of cross-linking and mass spectrometry. We constructed a purpose-built database to match spectra with cross-linked peptides, define a score that expresses the quality of our identification, and estimate false positive rates. We show that our analysis sheds light on critical structural parameters such as the directionality of the homodimeric coiled coil of NDEL1, the register of the heterodimeric coiled coils of the NDC80 complex, and the organization of a tetramerization region in the NDC80 complex. Our approach is especially useful to address complexes that are difficult in addressing by standard structural methods.


Assuntos
Espectrometria de Massas/métodos , Proteínas de Transporte/química , Biologia Computacional , Dimerização , Humanos , Conformação Proteica
4.
J Neurosci ; 26(7): 2132-9, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16481446

RESUMO

Mutations in Lis1 cause classical lissencephaly, a developmental brain abnormality characterized by defects in neuronal positioning. Over the last decade, a clear link has been forged between Lis1 and the microtubule motor cytoplasmic dynein. Substantial evidence indicates that Lis1 functions in a highly conserved pathway with dynein to regulate neuronal migration and other motile events. Yeast two-hybrid studies predict that Lis1 binds directly to dynein heavy chains (Sasaki et al., 2000; Tai et al., 2002), but the mechanistic significance of this interaction is not well understood. We now report that recombinant Lis1 binds to native brain dynein and significantly increases the microtubule-stimulated enzymatic activity of dynein in vitro. Lis1 does this without increasing the proportion of dynein that binds to microtubules, indicating that Lis1 influences enzymatic activity rather than microtubule association. Dynein stimulation in vitro is not a generic feature of microtubule-associated proteins, because tau did not stimulate dynein. To our knowledge, this is the first indication that Lis1 or any other factor directly modulates the enzymatic activity of cytoplasmic dynein. Lis1 must be able to homodimerize to stimulate dynein, because a C-terminal fragment (containing the dynein interaction site but missing the self-association domain) was unable to stimulate dynein. Binding and colocalization studies indicate that Lis1 does not interact with all dynein complexes found in the brain. We propose a model in which Lis1 stimulates the activity of a subset of motors, which could be particularly important during neuronal migration and long-distance axonal transport.


Assuntos
Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Neurônios/fisiologia , 1-Alquil-2-acetilglicerofosfocolina Esterase , Processamento Alternativo , Animais , Transporte Axonal/fisiologia , Encéfalo/fisiologia , Linhagem Celular , Movimento Celular/fisiologia , Variação Genética , Camundongos , Proteínas Recombinantes/metabolismo , Spodoptera , Transfecção
5.
Mol Cell ; 18(3): 379-91, 2005 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-15866179

RESUMO

Aurora family serine/threonine kinases control mitotic progression, and their deregulation is implicated in tumorigenesis. Aurora A and Aurora B, the best-characterized members of mammalian Aurora kinases, are approximately 60% identical but bind to unrelated activating subunits. The structure of the complex of Aurora A with the TPX2 activator has been reported previously. Here, we report the crystal structure of Aurora B in complex with the IN-box segment of the inner centromere protein (INCENP) activator and with the small molecule inhibitor Hesperadin. The Aurora B:INCENP complex is remarkably different from the Aurora A:TPX2 complex. INCENP forms a crown around the small lobe of Aurora B and induces the active conformation of the T loop allosterically. The structure represents an intermediate state of activation of Aurora B in which the Aurora B C-terminal segment stabilizes an open conformation of the catalytic cleft, and a critical ion pair in the kinase active site is impaired. Phosphorylation of two serines in the carboxyl terminus of INCENP generates the fully active kinase.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Indóis/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Sulfonamidas/metabolismo , Sequência de Aminoácidos , Animais , Aurora Quinase B , Aurora Quinases , Sítios de Ligação , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Cristalografia por Raios X , Ativação Enzimática , Humanos , Indóis/química , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos , Ligação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Estrutura Secundária de Proteína , Alinhamento de Sequência , Sulfonamidas/química , Xenopus laevis
6.
Neuron ; 44(5): 809-21, 2004 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-15572112

RESUMO

Mutations in the LIS1 gene cause lissencephaly, a human neuronal migration disorder. LIS1 binds dynein and the dynein-associated proteins Nde1 (formerly known as NudE), Ndel1 (formerly known as NUDEL), and CLIP-170, as well as the catalytic alpha dimers of brain cytosolic platelet activating factor acetylhydrolase (PAF-AH). The mechanism coupling the two diverse regulatory pathways remains unknown. We report the structure of LIS1 in complex with the alpha2/alpha2 PAF-AH homodimer. One LIS1 homodimer binds symmetrically to one alpha2/alpha2 homodimer via the highly conserved top faces of the LIS1 beta propellers. The same surface of LIS1 contains sites of mutations causing lissencephaly and overlaps with a putative dynein binding surface. Ndel1 competes with the alpha2/alpha2 homodimer for LIS1, but the interaction is complex and requires both the N- and C-terminal domains of LIS1. Our data suggest that the LIS1 molecule undergoes major conformational rearrangement when switching from a complex with the acetylhydrolase to the one with Ndel1.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fator de Ativação de Plaquetas/metabolismo , Transdução de Sinais/fisiologia , 1-Alquil-2-acetilglicerofosfocolina Esterase/química , Sequência de Aminoácidos , Animais , Ligação Competitiva , Proteínas de Transporte/metabolismo , Linhagem Celular , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Conformação Molecular , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Spodoptera
7.
Chem Biol ; 10(12): 1255-66, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14700633

RESUMO

Gastropod mollusks have been used for over 2500 years to produce the "Tyrian purple" dye made famous by the Phoenicians. This dye is constituted of mixed bromine-substituted indigo and indirubin isomers. Among these, the new natural product 6-bromoindirubin and its synthetic, cell-permeable derivative, 6-bromoindirubin-3'-oxime (BIO), display remarkable selective inhibition of glycogen synthase kinase-3 (GSK-3). Cocrystal structure of GSK-3beta/BIO and CDK5/p25/indirubin-3'-oxime were resolved, providing a detailed view of indirubins' interactions within the ATP binding pocket of these kinases. BIO but not 1-methyl-BIO, its kinase inactive analog, also inhibited the phosphorylation on Tyr276/216, a GSK-3alpha/beta activation site. BIO but not 1-methyl-BIO reduced beta-catenin phosphorylation on a GSK-3-specific site in cellular models. BIO but not 1-methyl-BIO closely mimicked Wnt signaling in Xenopus embryos. 6-bromoindirubins thus provide a new scaffold for the development of selective and potent pharmacological inhibitors of GSK-3.


Assuntos
Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Indóis/isolamento & purificação , Indóis/farmacologia , Animais , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Inibidores Enzimáticos/química , Quinase 3 da Glicogênio Sintase/química , Quinase 3 da Glicogênio Sintase/metabolismo , Indóis/química , Modelos Moleculares , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/metabolismo , Frutos do Mar , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato , Proteínas Wnt , Xenopus/embriologia , Xenopus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...