Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 935: 173428, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777065

RESUMO

The water-soluble polymer polyvinylpyrrolidone (PVP) is an established ingredient in pharmaceutical and personal care product (PPCP) formulations. Due to its high usage and lack of biodegradability, it has been detected up to 7.0 mg L-1 in wastewater and 0.1 mg L-1 in the receiving freshwaters, with several studies showing detrimental sublethal effects in a range of aquatic species. A lack of simple analytical methods to detect and quantify PVP currently impacts further investigation into the cause of these sublethal effects. In this paper we propose a refractive index gel-permeation chromatography (GPC) method to quantify PVP, which includes the processing of raw chromatograms using line deconvolution to calculate peak area. The method was then applied to Daphnia magna exposed to PVP for 48 h. A limit of detection (LOD) and limit of quantification (LOQ) of 0.05 and 0.2 mg mL-1 respectively was determined, with a recovery of 78 % from spiked Daphnia magna. PVP was detected in the samples above the LOD but below the LOQ. This suggests PVP is ingested by Daphnia magna, which warrants further investigation into whether bioaccumulation of PVP could be causing the sublethal effects seen in other studies.


Assuntos
Daphnia , Povidona , Poluentes Químicos da Água , Animais , Daphnia/fisiologia , Daphnia/efeitos dos fármacos , Povidona/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Refratometria , Monitoramento Ambiental/métodos , Organismos Aquáticos/efeitos dos fármacos , Limite de Detecção , Polímeros , Daphnia magna
3.
Sci Total Environ ; 907: 168086, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37890633

RESUMO

While the inclusion of synthetic polymers such as primary microplastics within personal care products have been widely restricted under EU/UK Law, water-soluble polymers (WSPs) have so far slipped the net of global chemical regulation despite evidence that these could be polluting wastewater effluents at concentrations greatly exceeding those of microplastics. Polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) represent WSPs with common industry and household uses, down-the-drain disposal and a direct route to wastewater treatment plants, conveying high risk of environmental leaching into freshwater ecosystems. The current study is the first investigating the impacts of predicted environmental concentrations of these WSPs on life-history traits of two freshwater species also constituting a disease model (fish - Poecilia reticulata and parasite - Gyrodactylus turnbulli). Single effects of WSPs on fish as well as their interactive effects with infection of the ectoparasite were determined over a 45-day exposure. Generally, WSPs reduced fish growth and increased routine metabolic rate of fish implying a depleted energetic budget, however these effects were dose, exposure time and polymer dependent. Parasitic infection alone caused a significant reduction in fish growth and enhanced fish routine metabolic rate. In contrast, a non-additive effect on metabolic rate was evident in fish experiencing simultaneous infection and WSP exposure, suggesting a protective effect of the two WSPs for fish also exposed to a metazoan ectoparasite. Off-host parasite survival was significantly lowered by both WSPs; however, parasite counts of infected fish also exposed to WSP were not significantly different from the control, implying more complex mechanisms may underpin this stressor interaction. Distinct detrimental impacts were inflicted on both organisms implying environmental leaching of WSPs may be causing significant disruption to interspecies interactions within freshwater ecosystems. Additionally, these results could contribute to sustainable development in industry, as we conclude PVA represents a less harmful alternative to PVP.


Assuntos
Poecilia , Poluentes Químicos da Água , Animais , Polímeros , Plásticos , Ecossistema , Microplásticos , Água Doce , Água/química , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...