Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(6): 109898, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38812545

RESUMO

Decarbonization plans depend on the rapid, large-scale deployment of batteries to sufficiently decarbonize the electricity system and on-road transport. This can take many forms, shaped by technology, materials, and supply chain selection, which will have local and global environmental and social impacts. Current knowledge gaps limit the ability of decision-makers to make choices in facilitating battery deployment that minimizes or avoids unintended environmental and social consequences. These gaps include a lack of harmonized, accessible, and up-to-date data on manufacturing and supply chains and shortcomings within sustainability and social impact assessment methods, resulting in uncertainty that limits incorporation of research into policy making. These gaps can lead to unintended detrimental effects of large-scale battery deployment. To support decarbonization goals while minimizing negative environmental and social impacts, we elucidate current barriers to tracking how decision-making for large-scale battery deployment translates to environmental and social impacts and recommend steps to overcome them.

3.
J Hazard Mater ; 437: 129301, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35716560

RESUMO

Batteries are important for promoting renewable energy, but, like most engineered products, they contain multiple hazardous materials. The purpose of this study is to evaluate industrial-scale batteries using GreenScreen® for Safer Chemicals, an established chemical hazard assessment (CHA) framework, and to develop a systematic, transparent methodology to quantify the CHA results, harmonize them, and aggregate them into single-value hazard scores, which can facilitate quantitative comparison and a robust evaluation of data gaps, inconsistencies, and uncertainty through the implementation of carefully selected scenarios and stochastic multicriteria acceptability analysis (SMAA). Using multiple authoritative toxicity data sources, six battery products are evaluated: three lithium-ion batteries (lithium iron phosphate, lithium nickel cobalt manganese hydroxide, and lithium manganese oxide), and three redox flow batteries (vanadium redox, zinc-bromine, and all-iron). The CHA results indicate that many materials in these batteries, including reagents and intermediates, inherently exhibit high hazard; therefore, safer materials should be identified and considered in future designs. The scenario analysis and SMAA, combined, provide a quantitative evaluation framework to support the decision-making needed to compare alternative technologies. Thus, this study highlights specific strategies to reduce the use of hazardous materials in complex engineered products before they are widely used in this rapidly-expanding industry sector.

4.
Sci Total Environ ; 497-498: 711-724, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25087186

RESUMO

A study was conducted to compare the technical potential and effectiveness of different water supply options for securing water availability in a large-scale, interconnected water supply system under historical and climate-change augmented inflow and demand conditions. Part 2 of the study focused on determining the greenhouse gas and renewable energy utilization impacts of different pathways to stabilize major surface reservoir levels. Using a detailed electric grid model and taking into account impacts on the operation of the water supply infrastructure, the greenhouse gas emissions and effect on overall grid renewable penetration level was calculated for each water supply option portfolio that successfully secured water availability from Part 1. The effects on the energy signature of water supply infrastructure were found to be just as important as that of the fundamental processes for each option. Under historical (baseline) conditions, many option portfolios were capable of securing surface reservoir levels with a net neutral or negative effect on emissions and a benefit for renewable energy utilization. Under climate change augmented conditions, however, careful selection of the water supply option portfolio was required to prevent imposing major emissions increases for the system. Overall, this analysis provided quantitative insight into the tradeoffs associated with choosing different pathways for securing California's water supply.

5.
Sci Total Environ ; 497-498: 697-710, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25022721

RESUMO

The technical potential and effectiveness of different water supply options for securing water availability in a large-scale, interconnected water supply system under historical and climate-change augmented inflow and demand conditions were compared. Part 1 of the study focused on determining the scale of the options required to secure water availability and compared the effectiveness of different options. A spatially and temporally resolved model of California's major surface reservoirs was developed, and its sensitivity to urban water conservation, desalination, and water reuse was examined. Potential capacities of the different options were determined. Under historical (baseline) hydrology conditions, many individual options were found to be capable of securing water availability alone. Under climate change augment conditions, a portfolio approach was necessary. The water savings from many individual options other than desalination were insufficient in the latter, however, relying on seawater desalination alone requires extreme capacity installations which have energy, brine disposal, management, and cost implications. The importance of identifying and utilizing points of leverage in the system for choosing where to deploy different options is also demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...