Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 380
Filtrar
1.
Am J Med Genet A ; : e63810, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958480

RESUMO

Noonan syndrome (NS) is an autosomal dominant condition characterized by facial dysmorphism, congenital heart disease, development delay, growth retardation and lymphatic disease. It is caused by germline pathogenic variants in genes encoding proteins in the Ras/mitogen-activated protein kinase signaling pathway. Nerve enlargement is not generally considered as a feature of NS, although some cases have been reported. High-resolution nerve ultrasound enables detailed anatomical assessment of peripheral nerves and can show enlarged nerves. This retrospective cohort study aims to describe the sonographic findings of patients with NS performed during a 1-year time period. Data on the degree of enlargement, the relation to increasing age, pain in extremities, genotype on the gene level and clinical features were collected. Twenty-nine of 93 patients visiting the NS Center of Expertise of the Radboud University Medical Center Nijmegen underwent high-resolution ultrasound. In 24 patients (83%) nerve enlargement was found. Most of them experienced pain. We observed a weak correlation with increasing age and the degree of nerve enlargement but no association with pain, genotype at the gene level or clinical features. This study shows that patients with NS have a high predisposition for sonographic nerve enlargement and that the majority experience pain.

2.
Life (Basel) ; 14(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38929714

RESUMO

The RASopathies are a group of syndromes caused by genetic variants that affect the RAS-MAPK signaling pathway, which is essential for cell response to diverse stimuli. These variants functionally converge towards the overactivation of the pathway, leading to various constitutional and mosaic conditions. These syndromes show overlapping though distinct clinical presentations and share congenital heart defects, hypertrophic cardiomyopathy (HCM), and lymphatic dysplasia as major clinical features, with highly variable prevalence and severity. Available treatments have mainly been directed to target the symptoms. However, repurposing MEK inhibitors (MEKis), which were originally developed for cancer treatment, to target evolutive aspects occurring in these disorders is a promising option. Animal models have shown encouraging results in treating various RASopathy manifestations, including HCM and lymphatic abnormalities. Clinical reports have also provided first evidence supporting the effectiveness of MEKi, especially trametinib, in treating life-threatening conditions associated with these disorders. Nevertheless, despite notable improvements, there are adverse events that occur, necessitating careful monitoring. Moreover, there is evidence indicating that multiple pathways can contribute to these disorders, indicating a current need to more accurate understand of the underlying mechanism of the disease to apply an effective targeted therapy. In conclusion, while MEKi holds promise in managing life-threatening complications of RASopathies, dedicated clinical trials are required to establish standardized treatment protocols tailored to take into account the individual needs of each patient and favor a personalized treatment.

3.
Eur J Hum Genet ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824261

RESUMO

Pathogenic, largely truncating variants in the ETS2 repressor factor (ERF) gene, encoding a transcriptional regulator negatively controlling RAS-MAPK signaling, have been associated with syndromic craniosynostosis involving various cranial sutures and Chitayat syndrome, an ultrarare condition with respiratory distress, skeletal anomalies, and facial dysmorphism. Recently, a single patient with craniosynostosis and a phenotype resembling Noonan syndrome (NS), the most common disorder among the RASopathies, was reported to carry a de novo loss-of-function variant in ERF. Here, we clinically profile 26 individuals from 15 unrelated families carrying different germline heterozygous variants in ERF and showing a phenotype reminiscent of NS. The majority of subjects presented with a variable degree of global developmental and/or language delay. Their shared facial features included absolute/relative macrocephaly, high forehead, hypertelorism, palpebral ptosis, wide nasal bridge, and low-set/posteriorly angulated ears. Stature was below the 3rd centile in two-third of the individuals, while no subject showed typical NS cardiac involvement. Notably, craniosynostosis was documented only in three unrelated individuals, while a dolichocephalic aspect of the skull in absence of any other evidence supporting a premature closing of sutures was observed in other 10 subjects. Unilateral Wilms tumor was diagnosed in one individual. Most cases were familial, indicating an overall low impact on fitness. Variants were nonsense and frameshift changes, supporting ERF haploinsufficiency. These findings provide evidence that heterozygous loss-of-function variants in ERF cause a "RASopathy" resembling NS with or without craniosynostosis, and allow a first dissection of the molecular circuits contributing to MAPK signaling pleiotropy.

4.
Eur J Hum Genet ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824260

RESUMO

Hypertrophic cardiomyopathy (HCM) is the major contributor to morbidity and mortality in Noonan syndrome (NS). Gain-of-function variants in RAF1 are associated with high prevalence of HCM. Among these, NM_002880.4:c.770C > T, NP_002871.1:p.(Ser257Leu) accounts for approximately half of cases and has been reported as associated with a particularly severe outcome. Nevertheless, comprehensive studies on cases harboring this variant are missing. To precisely define the phenotype associated to the RAF1:c.770C > T, variant, an observational retrospective analysis on patients carrying the c.770C > T variant was conducted merging 17 unpublished patients and literature-derived ones. Data regarding prenatal findings, clinical features and cardiac phenotypes were collected to provide an exhaustive description of the associated phenotype. Clinical information was collected in 107 patients. Among them, 92% had HCM, mostly diagnosed within the first year of life. Thirty percent of patients were preterm and 47% of the newborns was admitted in a neonatal intensive care unit, mainly due to respiratory complications of HCM and/or pulmonary arterial hypertension. Mortality rate was 13%, mainly secondary to HCM-related complications (62%) at the average age of 7.5 months. Short stature had a prevalence of 91%, while seizures and ID of 6% and 12%, respectively. Two cases out of 75 (3%) developed neoplasms. In conclusion, patients with the RAF1:c.770C > T pathogenic variant show a particularly severe phenotype characterized by rapidly progressive neonatal HCM and high mortality rate suggesting the necessity of careful monitoring and early intervention to prevent or slow down the progression of HCM.

6.
Am J Hum Genet ; 111(6): 1206-1221, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38772379

RESUMO

Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary ß subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.


Assuntos
Transtornos do Neurodesenvolvimento , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Epilepsia/genética , Sequenciamento do Exoma , Doenças Genéticas Ligadas ao Cromossomo X/genética , Heterozigoto , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Linhagem , Fenótipo , Canais de Potássio Shal/genética
7.
J Pathol ; 263(2): 166-177, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38629245

RESUMO

Infantile fibrosarcomas (IFS) and congenital mesoblastic nephroma (CMN) are rare myofibroblastic tumors of infancy and early childhood commonly harboring the ETV6::NTRK3 gene fusion. IFS/CMN are considered as tumors with an 'intermediate prognosis' as they are locally aggressive, but rarely metastasize, and generally have a favorable outcome. A fraction of IFS/CMN-related neoplasms are negative for the ETV6::NTRK3 gene rearrangement and are characterized by other chimeric proteins promoting MAPK signaling upregulation. In a large proportion of these tumors, which are classified as IFS-like mesenchymal neoplasms, the contributing molecular events remain to be identified. Here, we report three distinct rearrangements involving RAF1 among eight ETV6::NTRK3 gene fusion-negative tumors with an original histological diagnosis of IFS/CMN. The three fusion proteins retain the entire catalytic domain of the kinase. Two chimeric products, GOLGA4::RAF1 and LRRFIP2::RAF1, had previously been reported as driver events in different cancers, whereas the third, CLIP1::RAF1, represents a novel fusion protein. We demonstrate that CLIP1::RAF1 acts as a bona fide oncoprotein promoting cell proliferation and migration through constitutive upregulation of MAPK signaling. We show that the CLIP1::RAF1 hyperactive behavior does not require RAS activation and is mediated by constitutive 14-3-3 protein-independent dimerization of the chimeric protein. As previously reported for the ETV6::NTRK3 fusion protein, CLIP1::RAF1 similarly upregulates PI3K-AKT signaling. Our findings document that RAF1 gene rearrangements represent a recurrent event in ETV6::NTRK3-negative IFS/CMN and provide a rationale for the use of inhibitors directed to suppress MAPK and PI3K-AKT signaling in these cancers. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Fibrossarcoma , Nefroma Mesoblástico , Proteínas de Fusão Oncogênica , Proteínas Proto-Oncogênicas c-raf , Humanos , Fibrossarcoma/genética , Fibrossarcoma/patologia , Proteínas Proto-Oncogênicas c-raf/genética , Lactente , Proteínas de Fusão Oncogênica/genética , Nefroma Mesoblástico/genética , Nefroma Mesoblástico/patologia , Feminino , Masculino , Neoplasias Renais/genética , Neoplasias Renais/patologia , Fusão Gênica , Transdução de Sinais/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proliferação de Células , Rearranjo Gênico , Variante 6 da Proteína do Fator de Translocação ETS , Receptor trkC
8.
Am J Med Genet A ; 194(8): e63627, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38613168

RESUMO

Casitas B-lineage lymphoma (CBL) encodes an adaptor protein with E3-ligase activity negatively controlling intracellular signaling downstream of receptor tyrosine kinases. Somatic CBL mutations play a driver role in a variety of cancers, particularly myeloid malignancies, whereas germline defects in the same gene underlie a RASopathy having clinical overlap with Noonan syndrome (NS) and predisposing to juvenile myelomonocytic leukemia and vasculitis. Other features of the disorder include cardiac defects, postnatal growth delay, cryptorchidism, facial dysmorphisms, and predisposition to develop autoimmune disorders. Here we report a novel CBL variant (c.1202G>T; p.Cys401Phe) occurring de novo in a subject with café-au-lait macules, feeding difficulties, mild dysmorphic features, psychomotor delay, autism spectrum disorder, thrombocytopenia, hepatosplenomegaly, and recurrent hypertransaminasemia. The identified variant affects an evolutionarily conserved residue located in the RING finger domain, a known mutational hot spot of both germline and somatic mutations. Functional studies documented enhanced EGF-induced ERK phosphorylation in transiently transfected COS1 cells. The present findings further support the association of pathogenic CBL variants with immunological and hematological manifestations in the context of a presentation with only minor findings reminiscent of NS or a clinically related RASopathy.


Assuntos
Mutação em Linhagem Germinativa , Proteínas Proto-Oncogênicas c-cbl , Humanos , Proteínas Proto-Oncogênicas c-cbl/genética , Mutação em Linhagem Germinativa/genética , Masculino , Síndrome de Noonan/genética , Síndrome de Noonan/patologia , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/imunologia , Transtorno do Espectro Autista/sangue , Predisposição Genética para Doença , Pré-Escolar , Criança , Animais , Fenótipo , Células COS , Trombocitopenia/genética , Trombocitopenia/patologia
9.
Nat Commun ; 15(1): 3662, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688902

RESUMO

Hematopoietic stem cell gene therapy (GT) using a γ-retroviral vector (γ-RV) is an effective treatment for Severe Combined Immunodeficiency due to Adenosine Deaminase deficiency. Here, we describe a case of GT-related T-cell acute lymphoblastic leukemia (T-ALL) that developed 4.7 years after treatment. The patient underwent chemotherapy and haploidentical transplantation and is currently in remission. Blast cells contain a single vector insertion activating the LIM-only protein 2 (LMO2) proto-oncogene, confirmed by physical interaction, and low Adenosine Deaminase (ADA) activity resulting from methylation of viral promoter. The insertion is detected years before T-ALL in multiple lineages, suggesting that further hits occurred in a thymic progenitor. Blast cells contain known and novel somatic mutations as well as germline mutations which may have contributed to transformation. Before T-ALL onset, the insertion profile is similar to those of other ADA-deficient patients. The limited incidence of vector-related adverse events in ADA-deficiency compared to other γ-RV GT trials could be explained by differences in transgenes, background disease and patient's specific factors.


Assuntos
Adenosina Desaminase , Agamaglobulinemia , Terapia Genética , Vetores Genéticos , Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proto-Oncogene Mas , Imunodeficiência Combinada Severa , Humanos , Adenosina Desaminase/deficiência , Adenosina Desaminase/genética , Terapia Genética/métodos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Imunodeficiência Combinada Severa/terapia , Imunodeficiência Combinada Severa/genética , Vetores Genéticos/genética , Agamaglobulinemia/terapia , Agamaglobulinemia/genética , Masculino , Retroviridae/genética
10.
Mol Med ; 30(1): 47, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594640

RESUMO

BACKGROUND: RASopathies are genetic syndromes affecting development and having variable cancer predisposition. These disorders are clinically related and are caused by germline mutations affecting key players and regulators of the RAS-MAPK signaling pathway generally leading to an upregulated ERK activity. Gain-of-function (GOF) mutations in PTPN11, encoding SHP2, a cytosolic protein tyrosine phosphatase positively controlling RAS function, underlie approximately 50% of Noonan syndromes (NS), the most common RASopathy. A different class of these activating mutations occurs as somatic events in childhood leukemias. METHOD: Here, we evaluated the application of a FRET-based zebrafish ERK reporter, Teen, and used quantitative FRET protocols to monitor non-physiological RASopathy-associated changes in ERK activation. In a multi-level experimental workflow, we tested the suitability of the Teen reporter to detect pan-embryo ERK activity correlates of morphometric alterations driven by the NS-causing Shp2D61G allele. RESULTS: Spectral unmixing- and acceptor photobleaching (AB)-FRET analyses captured pathological ERK activity preceding the manifestation of quantifiable body axes defects, a morphological pillar used to test the strength of SHP2 GoF mutations. Last, the work shows that by multi-modal FRET analysis, we can quantitatively trace back the modulation of ERK phosphorylation obtained by low-dose MEK inhibitor treatment to early development, before the onset of morphological defects. CONCLUSION: This work proves the usefulness of FRET imaging protocols on both live and fixed Teen ERK reporter fish to readily monitor and quantify pharmacologically- and genetically-induced ERK activity modulations in early embryos, representing a useful tool in pre-clinical applications targeting RAS-MAPK signaling.


Assuntos
Síndrome de Noonan , Peixe-Zebra , Animais , Humanos , Adolescente , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Transferência Ressonante de Energia de Fluorescência , Síndrome de Noonan/genética , Mutação , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
11.
NPJ Precis Oncol ; 8(1): 92, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637626

RESUMO

In vitro models of pediatric brain tumors (pBT) are instrumental for better understanding the mechanisms contributing to oncogenesis and testing new therapies; thus, ideally, they should recapitulate the original tumor. We applied DNA methylation (DNAm) and copy number variation (CNV) profiling to characterize 241 pBT samples, including 155 tumors and 86 pBT-derived cell cultures, considering serum vs serum-free conditions, late vs early passages, and dimensionality (2D vs 3D cultures). We performed a t-SNE classification and identified differentially methylated regions in tumors compared to cell models. Early cell cultures recapitulate the original tumor, but serum media and 2D culturing were demonstrated to significantly contribute to the divergence of DNAm profiles from the parental ones. All divergent cells clustered together acquiring a common deregulated epigenetic signature suggesting a shared selective pressure. We identified a set of hypomethylated genes shared among unfaithful cells converging on response to growth factors and migration pathways, such as signaling cascade activation, tissue organization, and cellular migration. In conclusion, DNAm and CNV are informative tools that should be used to assess the recapitulation of pBT-cells from parental tumors.

12.
Mov Disord ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38685873

RESUMO

BACKGROUND: The MRPS36 gene encodes a recently identified component of the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme of the Krebs cycle catalyzing the oxidative decarboxylation of 2-oxoglutarate to succinyl-CoA. Defective OGDHC activity causes a clinically variable metabolic disorder characterized by global developmental delay, severe neurological impairment, liver failure, and early-onset lactic acidosis. METHODS: We investigated the molecular cause underlying Leigh syndrome with bilateral striatal necrosis in two siblings through exome sequencing. Functional studies included measurement of the OGDHC enzymatic activity and MRPS36 mRNA levels in fibroblasts, assessment of protein stability in transfected cells, and structural analysis. A literature review was performed to define the etiological and phenotypic spectrum of OGDHC deficiency. RESULTS: In the two affected brothers, exome sequencing identified a homozygous nonsense variant (c.283G>T, p.Glu95*) of MRPS36. The variant did not affect transcript processing and stability, nor protein levels, but resulted in a shorter protein lacking nine residues that contribute to the structural and functional organization of the OGDHC complex. OGDHC enzymatic activity was significantly reduced. The review of previously reported cases of OGDHC deficiency supports the association of this enzymatic defect with Leigh phenotypic spectrum and early-onset movement disorder. Slightly elevated plasma levels of glutamate and glutamine were observed in our and literature patients with OGDHC defect. CONCLUSIONS: Our findings point to MRPS36 as a new disease gene implicated in Leigh syndrome. The slight elevation of plasma levels of glutamate and glutamine observed in patients with OGDHC deficiency represents a candidate metabolic signature of this neurometabolic disorder. © 2024 International Parkinson and Movement Disorder Society.

13.
Eur J Hum Genet ; 32(7): 819-826, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38528056

RESUMO

Autosomal dominant Kabuki syndrome (KS) is a rare multiple congenital anomalies/neurodevelopmental disorder caused by heterozygous inactivating variants or structural rearrangements of the lysine-specific methyltransferase 2D (KMT2D) gene. While it is often recognizable due to a distinctive gestalt, the disorder is clinically variable, and a phenotypic scoring system has been introduced to help clinicians to reach a clinical diagnosis. The phenotype, however, can be less pronounced in some patients, including those carrying postzygotic mutations. The full spectrum of pathogenic variation in KMT2D has not fully been characterized, which may hamper the clinical classification of a portion of these variants. DNA methylation (DNAm) profiling has successfully been used as a tool to classify variants in genes associated with several neurodevelopmental disorders, including KS. In this work, we applied a KS-specific DNAm signature in a cohort of 13 individuals with KMT2D VUS and clinical features suggestive or overlapping with KS. We succeeded in correctly classifying all the tested individuals, confirming diagnosis for three subjects and rejecting the pathogenic role of 10 VUS in the context of KS. In the latter group, exome sequencing allowed to identify the genetic cause underlying the disorder in three subjects. By testing five individuals with postzygotic pathogenic KMT2D variants, we also provide evidence that DNAm profiling has power to recognize pathogenic variants at different levels of mosaicism, identifying 15% as the minimum threshold for which DNAm profiling can be applied as an informative diagnostic tool in KS mosaics.


Assuntos
Anormalidades Múltiplas , Metilação de DNA , Proteínas de Ligação a DNA , Face , Doenças Hematológicas , Mosaicismo , Proteínas de Neoplasias , Doenças Vestibulares , Humanos , Doenças Vestibulares/genética , Doenças Vestibulares/diagnóstico , Face/anormalidades , Doenças Hematológicas/genética , Doenças Hematológicas/diagnóstico , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/diagnóstico , Proteínas de Ligação a DNA/genética , Masculino , Feminino , Proteínas de Neoplasias/genética , Criança , Pré-Escolar , Adolescente , Mutação em Linhagem Germinativa , Lactente , Fenótipo , Adulto
14.
Eur J Hum Genet ; 32(6): 619-629, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38351292

RESUMO

Mowat-Wilson syndrome (MOWS) is a rare congenital disease caused by haploinsufficiency of ZEB2, encoding a transcription factor required for neurodevelopment. MOWS is characterized by intellectual disability, epilepsy, typical facial phenotype and other anomalies, such as short stature, Hirschsprung disease, brain and heart defects. Despite some recognizable features, MOWS rarity and phenotypic variability may complicate its diagnosis, particularly in the neonatal period. In order to define a novel diagnostic biomarker for MOWS, we determined the genome-wide DNA methylation profile of DNA samples from 29 individuals with confirmed clinical and molecular diagnosis. Through multidimensional scaling and hierarchical clustering analysis, we identified and validated a DNA methylation signature involving 296 differentially methylated probes as part of the broader MOWS DNA methylation profile. The prevalence of hypomethylated CpG sites agrees with the main role of ZEB2 as a transcriptional repressor, while differential methylation within the ZEB2 locus supports the previously proposed autoregulation ability. Correlation studies compared the MOWS cohort with 56 previously described DNA methylation profiles of other neurodevelopmental disorders, further validating the specificity of this biomarker. In conclusion, MOWS DNA methylation signature is highly sensitive and reproducible, providing a useful tool to facilitate diagnosis.


Assuntos
Metilação de DNA , Fácies , Doença de Hirschsprung , Proteínas de Homeodomínio , Deficiência Intelectual , Microcefalia , Proteínas Repressoras , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Microcefalia/genética , Microcefalia/diagnóstico , Microcefalia/patologia , Doença de Hirschsprung/genética , Doença de Hirschsprung/diagnóstico , Doença de Hirschsprung/patologia , Proteínas de Homeodomínio/genética , Proteínas Repressoras/genética , Feminino , Masculino , Criança , Pré-Escolar , Adolescente , Ilhas de CpG
15.
Cancer Lett ; 588: 216711, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38423245

RESUMO

Five-year glioblastoma (GBM) survivors (LTS) are the minority of the isocitrate dehydrogenase (IDH)-wild-type GBM patients, and their molecular fingerprint is still largely unexplored. This multicenter retrospective study analyzed a large LTS-GBM cohort from nine Italian institutions and molecularly characterized a subgroup of patients by mutation, DNA methylation (DNAm) and copy number variation (CNV) profiling, comparing it to standard survival GBM. Mutation scan allowed the identification of pathogenic variants in most cases, showing a similar mutational spectrum in both groups, and highlighted TP53 as the most commonly mutated gene in the LTS group. We confirmed DNAm as a valuable tool for GBM classification with a diagnostic refinement by using brain tumor classifier v12.5. LTS were more heterogeneous with more cases classified as diffuse pediatric high-grade glioma subtypes and having peculiar CNVs. We observed a global higher methylation in CpG islands and in gene promoters of LTS with methylation levels of distinct gene promoters correlating with prognosis.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Criança , Glioblastoma/patologia , Estudos Retrospectivos , Isocitrato Desidrogenase/genética , Variações do Número de Cópias de DNA , Neoplasias Encefálicas/patologia , Mutação , Prognóstico , Metilação de DNA , Sobreviventes
16.
Am J Hum Genet ; 111(3): 594-613, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38423010

RESUMO

The endosomal sorting complex required for transport (ESCRT) machinery is essential for membrane remodeling and autophagy and it comprises three multi-subunit complexes (ESCRT I-III). We report nine individuals from six families presenting with a spectrum of neurodevelopmental/neurodegenerative features caused by bi-allelic variants in SNF8 (GenBank: NM_007241.4), encoding the ESCRT-II subunit SNF8. The phenotypic spectrum included four individuals with severe developmental and epileptic encephalopathy, massive reduction of white matter, hypo-/aplasia of the corpus callosum, neurodevelopmental arrest, and early death. A second cohort shows a milder phenotype with intellectual disability, childhood-onset optic atrophy, or ataxia. All mildly affected individuals shared the same hypomorphic variant, c.304G>A (p.Val102Ile). In patient-derived fibroblasts, bi-allelic SNF8 variants cause loss of ESCRT-II subunits. Snf8 loss of function in zebrafish results in global developmental delay and altered embryo morphology, impaired optic nerve development, and reduced forebrain size. In vivo experiments corroborated the pathogenicity of the tested SNF8 variants and their variable impact on embryo development, validating the observed clinical heterogeneity. Taken together, we conclude that loss of ESCRT-II due to bi-allelic SNF8 variants is associated with a spectrum of neurodevelopmental/neurodegenerative phenotypes mediated likely via impairment of the autophagic flux.


Assuntos
Epilepsia Generalizada , Atrofia Óptica , Animais , Humanos , Criança , Peixe-Zebra/genética , Atrofia Óptica/genética , Fenótipo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética
17.
JAMA Netw Open ; 7(1): e2353514, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38277144

RESUMO

Importance: The diagnosis of rare diseases and other genetic conditions can be daunting due to vague or poorly defined clinical features that are not recognized even by experienced clinicians. Next-generation sequencing technologies, such as whole-genome sequencing (WGS) and whole-exome sequencing (WES), have greatly enhanced the diagnosis of genetic diseases by expanding the ability to sequence a large part of the genome, rendering a cost-effectiveness comparison between them necessary. Objective: To assess the cost-effectiveness of WGS compared with WES and conventional testing in children with suspected genetic disorders. Design, Setting, and Participants: In this economic evaluation, a bayesian Markov model was implemented from January 1 to June 30, 2023. The model was developed using data from a cohort of 870 pediatric patients with suspected genetic disorders who were enrolled and underwent testing in the Ospedale Pediatrico Bambino Gesù, Rome, Italy, from January 1, 2015, to December 31, 2022. The robustness of the model was assessed through probabilistic sensitivity analysis and value of information analysis. Main Outcomes and Measures: Overall costs, number of definitive diagnoses, and incremental cost-effectiveness ratios per diagnosis were measured. The cost-effectiveness analyses involved 4 comparisons: first-tier WGS with standard of care; first-tier WGS with first-tier WES; first-tier WGS with second-tier WES; and first-tier WGS with second-tier WGS. Results: The ages of the 870 participants ranged from 0 to 18 years (539 [62%] girls). The results of the analysis suggested that adopting WGS as a first-tier strategy would be cost-effective compared with all other explored options. For all threshold levels above €29 800 (US $32 408) per diagnosis that were tested up to €50 000 (US $54 375) per diagnosis, first-line WGS vs second-line WES strategy (ie, 54.6%) had the highest probability of being cost-effective, followed by first-line vs second-line WGS (ie, 54.3%), first-line WGS vs the standard of care alternative (ie, 53.2%), and first-line WGS vs first-line WES (ie, 51.1%). Based on sensitivity analyses, these estimates remained robust to assumptions and parameter uncertainty. Conclusions and Relevance: The findings of this economic evaluation encourage the development of policy changes at various levels (ie, macro, meso, and micro) of international health systems to ensure an efficient adoption of WGS in clinical practice and its equitable access.


Assuntos
Genoma , Feminino , Humanos , Criança , Masculino , Sequenciamento do Exoma , Análise Custo-Benefício , Teorema de Bayes , Sequenciamento Completo do Genoma
18.
Cell Death Discov ; 10(1): 54, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278809

RESUMO

Riboflavin Transporter Deficiency (RTD) is a rare genetic, childhood-onset disease. This pathology has a relevant neurological involvement, being characterized by motor symptoms, ponto-bulbar paralysis and sensorineural deafness. Such clinical presentation is associated with muscle weakness and motor neuron (MN) degeneration, so that RTD is considered part of the MN disease spectrum. Based on previous findings demonstrating energy dysmetabolism and mitochondrial impairment in RTD induced Pluripotent Stem cells (iPSCs) and iPSC-derived MNs, here we address the involvement of intrinsic apoptotic pathways in disease pathogenesis using these patient-specific in vitro models by combined ultrastructural and confocal analyses. We show impaired neuronal survival of RTD iPSCs and MNs. Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) documents severe alterations in patients' cells, including deranged mitochondrial ultrastructure, and altered plasma membrane and nuclear organization. Occurrence of aberrantly activated apoptosis is confirmed by immunofluorescence and TUNEL assays. Overall, our work provides evidence of a role played by mitochondrial dysfunction in RTD, and identifies neuronal apoptosis as a contributing event in disease pathogenesis, indicating intrinsic apoptosis pathways as possible relevant targets for more effective therapeutical approaches.

19.
Clin Epigenetics ; 16(1): 9, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178234

RESUMO

BACKGROUND: Malignant peripheral nerve sheath tumors (MPNSTs) account for 3-10% of pediatric sarcomas, 50% of which occur in neurofibromatosis type 1 (NF1). Sporadic MPNSTs diagnosis may be challenging due to the absence of specific markers, apart from immunohistochemical H3K27me3 loss. DNA methylation (DNAm) profiling is a useful tool for brain and mesenchymal neoplasms categorization, and MPNSTs exhibit a specific DNAm signature. An MPNST-like group has recently been recognized, including pediatric tumors with retained H3K27me3 mark and clinical/histological features not yet well explored. This study aims to characterize the DNAm profile of pediatric/juvenile MPNSTs/MPNST-like entities and its diagnostic/prognostic relevance. RESULTS: We studied 42 tumors from two groups. Group 1 included 32 tumors histologically diagnosed as atypical neurofibroma (ANF) (N = 5) or MPNST (N = 27); group 2 comprised 10 tumors classified as MPNST-like according to Heidelberg sarcoma classifier. We performed further immunohistochemical and molecular tests to reach an integrated diagnosis. In group 1, DNAm profiling was inconclusive for ANF; while, it confirmed the original diagnosis in 12/27 MPNSTs, all occurring in NF1 patients. Five/27 MPNSTs were classified as MPNST-like: Integrated diagnosis confirmed MPNST identity for 3 cases; while, the immunophenotype supported the change to high-grade undifferentiated spindle cell sarcoma in 2 samples. The remaining 10/27 MPNSTs variably classified as schwannoma, osteosarcoma, BCOR-altered sarcoma, rhabdomyosarcoma (RMS)-MYOD1 mutant, RMS-like, and embryonal RMS or did not match with any defined entity. Molecular analysis and histologic review confirmed the diagnoses of BCOR, RMS-MYOD1 mutant, DICER1-syndrome and ERMS. Group 2 samples included 5 high-grade undifferentiated sarcomas/MPNSTs and 5 low-grade mesenchymal neoplasms. Two high-grade and 4 low-grade lesions harbored tyrosine kinase (TRK) gene fusions. By HDBSCAN clustering analysis of the whole cohort we identified two clusters mainly distinguished by H3K27me3 epigenetic signature. Exploring the copy number variation, high-grade tumors showed frequent chromosomal aberrations and CDKN2A/B loss significantly impacted on survival in the MPNSTs cohort. CONCLUSION: DNAm profiling is a useful tool in diagnostic work-up of MPNSTs. Its application in a retrospective series collected during pre-molecular era contributed to classify morphologic mimics. The methylation group MPNST-like is a 'hybrid' category in pediatrics including high-grade and low-grade tumors mainly characterized by TRK alterations.


Assuntos
Neoplasias Ósseas , Neurofibrossarcoma , Rabdomiossarcoma , Sarcoma , Humanos , Criança , Neurofibrossarcoma/diagnóstico , Neurofibrossarcoma/genética , Neurofibrossarcoma/patologia , Histonas/metabolismo , Metilação de DNA , Estudos Retrospectivos , Variações do Número de Cópias de DNA , Sarcoma/diagnóstico , Sarcoma/genética , Sarcoma/patologia , Proteínas Tirosina Quinases , Ribonuclease III , RNA Helicases DEAD-box
20.
Epilepsia Open ; 9(1): 258-267, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37943120

RESUMO

OBJECTIVE: Cardio-facio-cutaneous syndrome (CFC) is a genetic disorder due to variants affecting genes coding key proteins of the Ras/MAPK signaling pathway. Among the different features of CFC, neurological involvement, including cerebral malformations and epilepsy, represents a common and clinically relevant aspect. Status epilepticus (SE) is a recurrent feature, especially in a specific subgroup of CFC patients with developmental and epileptic encephalopathy (DEE) and history of severe pharmacoresistant epilepsy. Here we dissect the features of SE in CFC patients with a particular focus on longitudinal magnetic resonance imaging (MRI) findings to identify clinical-radiological patterns and discuss the underlying physiopathology. METHODS: We retrospectively analyzed clinical, electroencephalogram (EEG), and MRI data collected in a single center from a cohort of 23 patients with CFC carrying pathogenic BRAF variants who experienced SE during a 5-year period. RESULTS: Seven episodes of SE were documented in 5 CFC patients who underwent EEG and MRI at baseline. MRI was performed during SE/within 72 hours from SE termination in 5/7 events. Acute/early post-ictal MRI findings showed heterogenous abnormalities: restricted diffusion in 2/7, focal area of pcASL perfusion change in 2/7, focal cortical T2/FLAIR hyperintensity in 2/7. Follow-up images were available for 4/7 SE. No acute changes were detected in 2/7 (MRI performed 4 days after SE termination). SIGNIFICANCE: Acute focal neuroimaging changes concomitant with ictal EEG focus were present in 5/7 episodes, though with different findings. The heterogeneous patterns suggest different contributing factors, possibly including the presence of focal cortical malformations and autoinflammation. When cytotoxic edema is revealed by MRI, it can be followed by permanent structural damage, as already observed in other genetic conditions. A better understanding of the physiopathology will provide access to targeted treatments allowing to prevent long-term adverse neurological outcome. PLAIN LANGUAGE SUMMARY: Cardio-facio-cutaneous syndrome is a genetic disorder that often causes prolonged seizures known as status epilepticus. This study has a focus on electroclinical and neuroimaging patterns in patients with cardio-facio-cutaneous syndrome. During these status epilepticus episodes, we found different abnormal brain imaging patterns in patients, indicating various causes like brain malformations and inflammation. Understanding these patterns could help doctors find specific treatments, protecting cardio-facio-cutaneous syndrome patients from long-term brain damage.


Assuntos
Displasia Ectodérmica , Epilepsia , Fácies , Insuficiência de Crescimento , Cardiopatias Congênitas , Estado Epiléptico , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Estudos Retrospectivos , Estado Epiléptico/diagnóstico por imagem , Estado Epiléptico/genética , Neuroimagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...