Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30186772

RESUMO

Staphylococcus aureus is a major pathogen responsible for bovine mastitis, the most common and costly disease affecting dairy cattle. S. aureus naturally releases extracellular vesicles (EVs) during its growth. EVs play an important role in the bacteria-bacteria and bacteria-host interactions and are notably considered as nanocarriers that deliver virulence factors to the host tissues. Whether EVs play a role in a mastitis context is still unknown. In this work, we showed that S. aureus Newbould 305 (N305), a bovine mastitis isolate, has the ability to generate EVs in vitro with a designated protein content. Purified S. aureus N305-secreted EVs were not cytotoxic when tested in vitro on MAC-T and PS, two bovine mammary epithelial cell lines. However, they induced the gene expression of inflammatory cytokines at levels similar to those induced by live S. aureus N305. The in vivo immune response to purified S. aureus N305-secreted EVs was tested in a mouse model for bovine mastitis and their immunogenic effect was compared to that of live S. aureus N305, heat-killed S. aureus N305 and to S. aureus lipoteichoic acid (LTA). Clinical and histopathological signs were evaluated and pro-inflammatory and chemotactic cytokine levels were measured in the mammary gland 24 h post-inoculation. Live S. aureus induced a significantly stronger inflammatory response than that of any other condition tested. Nevertheless, S. aureus N305-secreted EVs induced a dose-dependent neutrophil recruitment and the production of a selected set of pro-inflammatory mediators as well as chemokines. This immune response elicited by intramammary S. aureus N305-secreted EVs was comparable to that of heat-killed S. aureus N305 and, partly, by LTA. These results demonstrated that S. aureus N305-secreted EVs induce a mild inflammatory response distinct from the live pathogen after intramammary injection. Overall, our combined in vitro and in vivo data suggest that EVs are worth to be investigated to better understand the S. aureus pathogenesis and are relevant tools to develop strategies against bovine S. aureus mastitis.


Assuntos
Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Vesículas Extracelulares/imunologia , Glândulas Mamárias Humanas/patologia , Mastite Bovina/microbiologia , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/imunologia , Animais , Bovinos , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Mastite Bovina/patologia , Camundongos , Neutrófilos/imunologia , Infecções Estafilocócicas/patologia
2.
Microb Cell Fact ; 15: 83, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27184574

RESUMO

BACKGROUND: Corynebacterium pseudotuberculosis, a facultative intracellular bacterial pathogen, is the etiological agent of caseous lymphadenitis (CLA), an infectious disease that affects sheep and goats and it is responsible for significant economic losses. The disease is characterized mainly by bacteria-induced caseous necrosis in lymphatic glands. New vaccines are needed for reliable control and management of CLA. Thus, the putative virulence factors SpaC, SodC, NanH, and PknG from C. pseudotuberculosis FRC41 may represent new target proteins for vaccine development and pathogenicity studies. RESULTS: SpaC, PknG and NanH presented better vaccine potential than SodC after in silico analyses. A total of 136 B and T cell epitopes were predicted from the four putative virulence factors. A cluster analysis was performed to evaluate the redundancy degree among the sequences of the predicted epitopes; 57 clusters were formed, most of them (34) were single clusters. Two clusters from PknG and one from SpaC grouped epitopes for B and T-cell (MHC I and II). These epitopes can thus potentially stimulate a complete immune response (humoral and cellular) against C. pseudotuberculosis. Several other clusters, including two from NanH, grouped B-cell epitopes with either MHC I or II epitopes. The four target proteins were expressed in Escherichia coli. A purification protocol was developed for PknG expression. CONCLUSIONS: In silico analyses show that the putative virulence factors SpaC, PknG and NanH present good potential for CLA vaccine development. Target proteins were successfully expressed in E. coli. A protocol for PknG purification is described.


Assuntos
Vacinas Bacterianas/genética , Corynebacterium pseudotuberculosis/genética , Corynebacterium pseudotuberculosis/patogenicidade , Expressão Gênica , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Sequência de Aminoácidos , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/metabolismo , Análise por Conglomerados , Corynebacterium pseudotuberculosis/imunologia , Corynebacterium pseudotuberculosis/metabolismo , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/metabolismo , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Escherichia coli/metabolismo , Dados de Sequência Molecular , Plasmídeos/genética , Plasmídeos/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Fatores de Virulência/metabolismo
3.
Biochem Biophys Res Commun ; 467(1): 171-7, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26299923

RESUMO

Exfoliative toxins are serine proteases secreted by Staphylococcus aureus that are associated with toxin-mediated staphylococcal syndromes. To date, four different serotypes of exfoliative toxins have been identified and 3 of them (ETA, ETB, and ETD) are linked to human infection. Among these toxins, only the ETD structure remained unknown, limiting our understanding of the structural determinants for the functional differentiation between these toxins. We recently identified an ETD-like protein associated to S. aureus strains involved in mild mastitis in sheep. The crystal structure of this ETD-like protein was determined at 1.95 Å resolution and the structural analysis provide insights into the oligomerization, stability and specificity and enabled a comprehensive structural comparison with ETA and ETB. Despite the highly conserved molecular architecture, significant differences in the composition of the loops and in both the N- and C-terminal α-helices seem to define ETD-like specificity. Molecular dynamics simulations indicate that these regions defining ET specificity present different degrees of flexibility and may undergo conformational changes upon substrate recognition and binding. DLS and AUC experiments indicated that the ETD-like is monomeric in solution whereas it is present as a dimer in the asymmetric unit indicating that oligomerization is not related to functional differentiation among these toxins. Differential scanning calorimetry and circular dichroism assays demonstrated an endothermic transition centered at 52 °C, and an exothermic aggregation in temperatures up to 64 °C. All these together provide insights about the mode of action of a toxin often secreted in syndromes that are not associated with either ETA or ETB.


Assuntos
Exfoliatinas/química , Exfoliatinas/toxicidade , Staphylococcus aureus/química , Staphylococcus aureus/patogenicidade , Animais , Cristalografia por Raios X , Exfoliatinas/classificação , Feminino , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Ovinos , Infecções Estafilocócicas/etiologia , Infecções Estafilocócicas/microbiologia , Eletricidade Estática , Homologia Estrutural de Proteína , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...