Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 8(2): 281-9, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11545731

RESUMO

The arrest of secretion response (ASR) in sec mutants reversibly inhibits nuclear import and relocates nuclear proteins to the cytoplasm. sec mutants also relocate nucleoporins; however, endocytic and Golgi-to-vacuole transport mutants do not cause relocation. The ASR requires Wsc membrane proteins that are trapped along the secretory path, rather than those which are at the plasma membrane. The activity of the downstream kinase, Pkc1p, is also required; however, the Pkc1p MAP kinase cascade is not. sec mutants initiate compensatory transcriptional changes distinct from those of the unfolded protein response.


Assuntos
Proteínas Fúngicas/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia , Proteínas de Saccharomyces cerevisiae , Leveduras/fisiologia , Immunoblotting , Imunofilinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Microscopia de Fluorescência , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteína Quinase C/metabolismo , Receptores de Superfície Celular/metabolismo , Temperatura
2.
Traffic ; 2(6): 385-94, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11389766

RESUMO

In Huntington's Disease (HD), the huntingtin protein (Htt) includes an expanded polyglutamine domain. Since mutant Htt concentrates in the nucleus of affected neurons, we have inquired whether normal Htt (Q16--23) is also able to access the nucleus. We observe that a major pool of normal full-length Htt of HeLa cells is anchored to endosomes and also detect RNase-sensitive nuclear foci which include a 70-kDa N-terminal Htt fragment. Agents which damage DNA trigger caspase-3-dependent cleavage of Htt and dramatically relocate the 70 kDa fragment to the nucleoplasm. Considering that polyglutamine tracts stimulate caspase activation, mutant Htt is therefore poised to enter the nucleus. These considerations help rationalize the nuclear accumulation of Htt which is characteristic of HD and provide a first example of involvement of caspase cleavage in release of membrane-bound proteins which subsequently enter the nucleus.


Assuntos
Transporte Ativo do Núcleo Celular , Proteínas do Tecido Nervoso/biossíntese , Proteínas Nucleares/biossíntese , Sítios de Ligação , Caspases/metabolismo , Membrana Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Dano ao DNA , Detergentes/farmacologia , Endossomos/metabolismo , Inibidores Enzimáticos/farmacologia , Técnica Indireta de Fluorescência para Anticorpo , Células HeLa , Humanos , Proteína Huntingtina , Mutação , Peptídeos/metabolismo , Estrutura Terciária de Proteína
3.
Genetics ; 158(2): 613-25, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11404326

RESUMO

Dis3p, a subunit of the exosome, interacts directly with Ran. To clarify the relationship between the exosome and the RanGTPase cycle, a series of temperature-sensitive Saccharomyces cerevisiae dis3 mutants were isolated and their 5.8S rRNA processing was compared with processing in strains with mutations in a S. cerevisiae Ran homologue, Gsp1p. In both dis3 and gsp1 mutants, 3' processing of 7S-to-5.8S rRNA was blocked at three identical sites in an allele-specific manner. In contrast, the 5' end of 5.8S rRNA was terminated normally in gsp1 and in dis3. Inhibition of 5.8S rRNA maturation in gsp1 was rescued by overexpression of nuclear exosome components Dis3p, Rrp4p, and Mtr4p, but not by a cytoplasmic exosome component, Ski2p. Furthermore, gsp1 and dis3 accumulated the 5'-A0 fragment of 35S pre-rRNA, which is also degraded by the exosome, and the level of 27S rRNA was reduced. Neither 5.8S rRNA intermediates nor 5'-A0 fragments were observed in mutants defective in the nucleocytoplasmic transport, indicating that Gsp1p regulates rRNA processing through Dis3p, independent of nucleocytoplasmic transport.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Nucleares/metabolismo , RNA Ribossômico 5,8S/metabolismo , RNA Citoplasmático Pequeno/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Partícula de Reconhecimento de Sinal/metabolismo , Transporte Ativo do Núcleo Celular , Alelos , Núcleo Celular/metabolismo , Citoplasma/metabolismo , RNA Helicases DEAD-box , Primers do DNA/metabolismo , Exorribonucleases , Complexo Multienzimático de Ribonucleases do Exossomo , Proteínas Fúngicas/genética , Genótipo , Modelos Genéticos , Proteínas Monoméricas de Ligação ao GTP/genética , Mutagênese Sítio-Dirigida , Mutação , Proteínas Nucleares/genética , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , RNA Helicases/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Temperatura , Fatores de Tempo
4.
Mol Biol Cell ; 12(6): 1835-41, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11408589

RESUMO

Hypertonic shock of Saccharomyces cerevisiae activates the Hog1p MAP kinase cascade. In contrast, protein kinase C (Pkc1p) and the "cell integrity" MAP kinase cascade are critical for the response to hypotonic shock. We observed that hypertonic shock transiently relocated many, but not all, nuclear and nucleolar proteins to the cytoplasm. We hypothesized that the relocation of nuclear proteins was due to activation of the Hog1p kinase cascade, yet, surprisingly, Hog1p was not required for these effects. In contrast, Pkc1p kinase activity was required, although the Pkc1p MAP kinase cascade and several factors known to lie upstream and downstream of Pkc1p were not. Moreover, sudden induction of a hyperactive form of Pkc1p was sufficient to relocate nuclear proteins. Taken together, these observations show that the scope of involvement of Pkc1p in the organization of the nucleus considerably exceeds what has been characterized previously. The relocation of nuclear proteins is likely to account for the profound inhibition of RNA synthesis that was observed during hypertonic shock.


Assuntos
Núcleo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Quinase C , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/enzimologia , Soluções Hipertônicas , Immunoblotting , Transdução de Sinais , Temperatura , Fatores de Tempo
5.
Traffic ; 2(4): 261-7, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11285136

RESUMO

mRNA export is mediated by RNA-binding proteins which shuttle between the nucleus and cytoplasm. Using an in vitro unidirectional export assay, we observe that the shuttling mRNA-binding protein, hnRNP A1, is exported only extremely slowly unless incubations are supplemented with snRNA-specific oligonucleotides which inhibit splicing. In vivo microinjection experiments support this conclusion. Like many examples of nucleocytoplasmic transport, export of hnRNP A1 requires energy and is sensitive to the presence of wheat germ agglutinin. It does not, however, require supplementation with cytoplasmic proteins. Although the exportin, Crm1, is needed for export of several varieties of RNA, both the in vitro assay and in vivo assays show that it is not required for export of hnRNP A1. In vitro and in vivo studies also show that inhibition of transcription allows continued shuttling of hnRNP A1 and in fact accelerates its export. Judging from the stimulatory effects of targeted destruction of snRNAs, this is likely to reflect completion of the covalent maturation of the RNAs with which hnRNP A1 associates. These observations therefore provide a simple explanation of why multiple RNA-binding proteins relocate to the cytoplasm upon inhibition of transcription in vivo.


Assuntos
Núcleo Celular/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B , Carioferinas , Receptores Citoplasmáticos e Nucleares , Ribonucleoproteínas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Fusão Celular , Linhagem Celular , Permeabilidade da Membrana Celular , Técnicas de Cocultura , Digitonina/metabolismo , Células HeLa , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas , Humanos , Microscopia de Fluorescência , Sinais de Localização Nuclear/fisiologia , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Splicing de RNA , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas/genética , Transcrição Gênica/genética , Aglutininas do Germe de Trigo/metabolismo , Xenopus , Proteína Exportina 1
6.
J Struct Biol ; 129(2-3): 144-58, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10806065

RESUMO

Ongoing export of newly synthesized RNAs, as well as control of transcriptional activity, involves dynamic nucleocytoplasmic transport of proteins. Some proteins that shuttle reside primarily in the nucleus while others are concentrated in the cytoplasm. Moreover, some proteins shuttle continuously, while others shuttle only once. A third group is stimulated to relocate either into or out of the nucleus as a result of interruption of shuttling. In addition to these protein-specific events, several physiological stimuli have global effects on nucleocytoplasmic transport. In related events, selected proteins move between distinct sites in the nucleoplasm, others enter and leave the nucleolus, and still others transit between the nuclear envelope and cytoplasmic membranes. These multiple dynamic distributions provide numerous opportunities for precise communication between spatially distant sites in the cell.


Assuntos
Núcleo Celular/fisiologia , Núcleo Celular/ultraestrutura , Animais , Citoplasma/fisiologia , Citoplasma/ultraestrutura , Doença , Humanos , Interfase , Modelos Biológicos , Transcrição Gênica
7.
J Biol Chem ; 274(47): 33785-9, 1999 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-10559272

RESUMO

Yeast sec mutations define the machinery of vesicular traffic. Surprisingly, many of these mutations also inhibit ribosome biogenesis by reducing transcription of rRNA and genes encoding ribosomal proteins. We observe that these mutants reversibly inhibit protein import into the nucleus, with import cargo accumulating at the nucleoplasmic face of nuclear pore complexes, as when Ran-GTP cannot bind importins. They also rapidly and reversibly relocate multiple nucleolar and nucleoplasmic proteins to the cytoplasm. The import block and relocation are antagonized by overexpression of yeast Ran, Hog1p kinase, or Ssa/Hsp70 proteins or by inhibition of protein synthesis. These nucleocytoplasmic signaling events document an extraordinary plasticity of nuclear organization.


Assuntos
Núcleo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Transporte Biológico , Citoplasma/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
Proc Natl Acad Sci U S A ; 96(12): 6739-44, 1999 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-10359782

RESUMO

mRNA export involves association of mRNAs with nucleoplasmic proteins, delivery to the nuclear pore complex, translocation to the cytoplasm, and reimport of recycling components. Many yeast mutants inhibit mRNA export, but there is little information concerning the RNA carriers and steps of transport that they affect. The hnRNP/serine-arginine-rich-like protein, Npl3p/Mtr13p, binds poly(A)+ RNA and shuttles between the nucleus and cytoplasm. Its export accelerates on inhibition of RNA synthesis. In vivo tests show that its export requires two proteins with putative leucine-rich nuclear export signals: Gle1p, Mex67p, and several additional nuclear and nuclear pore complex-associated proteins. Surprisingly, a nonnuclear pool of an import factor (the importin alpha homologue, Srp1p) is also required. Changes in the methylation status of Npl3p do not correlate with its nucleocytoplasmic distribution. A crm1 mutant that inhibits export of proteins with leucine-rich nuclear export signals and mRNAs does not inhibit Npl3p export. Moreover, several proteins needed for Npl3p export are not needed for export of a typical Crm1p cargo. Thus, Npl3p export requires only a subset of proteins implicated in mRNA export, suggesting that more than one mRNA export path exists. A distinct group of mutants, including a mutation of a member of the importin beta superfamily, inhibits Npl3p reimport from the cytoplasm.


Assuntos
Proteínas de Transporte/metabolismo , Carioferinas , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares , Ribonucleoproteínas/metabolismo , Transporte Biológico , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , RNA Fúngico/metabolismo , Saccharomyces cerevisiae , Proteína Exportina 1
9.
EMBO J ; 17(9): 2651-62, 1998 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-9564047

RESUMO

The DBP5 gene encodes a putative RNA helicase of unknown function in the yeast Saccharomyces cerevisiae. It is shown here that Dbp5p is an ATP-dependent RNA helicase required for polyadenylated [poly(A)+] RNA export. Surprisingly, Dbp5p is present predominantly, if not exclusively, in the cytoplasm, and is highly enriched around the nuclear envelope. This observation raises the possibility that Dbp5p may play a role in unloading or remodeling messenger RNA particles (mRNPs) upon arrival in the cytoplasm and in coupling mRNP export and translation. The functions of Dbp5p are likely to be conserved, since its potential homologues can be found in a variety of eukaryotic cells.


Assuntos
RNA Nucleotidiltransferases/genética , RNA Nucleotidiltransferases/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/enzimologia , Schizosaccharomyces/enzimologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Citoplasma/enzimologia , Dictyostelium/enzimologia , Drosophila/embriologia , Drosophila/enzimologia , Embrião não Mamífero/enzimologia , Evolução Molecular , Feminino , Biblioteca Genômica , Humanos , Células Jurkat , Camundongos , Dados de Sequência Molecular , Membrana Nuclear/enzimologia , Oócitos/fisiologia , Células PC12 , Filogenia , RNA Helicases , RNA Nucleotidiltransferases/química , Ratos , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Frações Subcelulares/enzimologia , Xenopus
11.
EMBO J ; 15(23): 6750-7, 1996 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-8978700

RESUMO

Heat shock causes major positive and negative changes in gene expression, drastically alters the appearance of the nucleolus and inhibits rRNA synthesis. We here show that it causes many yeast nucleolar proteins, including the fibrillarin homolog Nop1p, to relocate to the cytoplasm. Relocation depends on several proteins implicated in mRNA transport (Mtrps) and is reversible. Two observations indicate, surprisingly, that disassembly results from a reduction in Ssa protein (Hsp70) levels: (i) selective depletion of Ssa1p leads to disassembly of the nucleolus; (ii) preincubation at 37 degrees C protects the nucleolus against disassembly by heat shock, unless expression of Ssa proteins is specifically inhibited. We observed that heat shock or reduction of Ssa1p levels inhibits protein import into the nucleus and therefore we propose that inhibition of import leads to disassembly of the nucleolus. These observations provide a simple explanation of the effects of heat shock on the anatomy of the nucleolus and rRNA transcription. They also extend understanding of the path of nuclear export. Since a number of nucleoplasmic proteins also relocate upon heat shock, these observations can provide a general mechanism for regulation of gene expression. Relocation of the hnRNP-like protein Mtr13p (= Npl3p, Nop3p), explains the heat shock sensitivity of export of average poly(A)+ RNA. Strikingly, Hsp mRNA export appears not to be affected.


Assuntos
Nucléolo Celular/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteínas Nucleolares Pequenas , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Nucléolo Celular/ultraestrutura , Proteínas Cromossômicas não Histona/metabolismo , Imunofluorescência , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP70/biossíntese , Ribonucleoproteínas Nucleares Heterogêneas , Temperatura Alta , Cinética , Modelos Biológicos , Saccharomyces cerevisiae/ultraestrutura , Esferoplastos/fisiologia
12.
Mol Cell Biol ; 16(12): 7161-72, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8943372

RESUMO

The conditional mRNA transport mutant of Saccharomyces cerevisiae, acc1-7-1 (mtr7-1), displays a unique alteration of the nuclear envelope. Unlike nucleoporin mutants and other RNA transport mutants, the intermembrane space expands, protuberances extend from the inner membrane into the intermembrane space, and vesicles accumulate in the intermembrane space. MTR7 is the same gene as ACC1, encoding acetyl coenzyme A (CoA) carboxylase (Acc1p), the rate-limiting enzyme of de novo fatty acid synthesis. Genetic and biochemical analyses of fatty acid synthesis mutants and acc1-7-1 indicate that the continued synthesis of malonyl-CoA, the enzymatic product of acetyl-CoA carboxylase, is required for an essential pathway which is independent from de novo synthesis of fatty acids. We provide evidence that synthesis of very-long-chain fatty acids (C26 atoms) is inhibited in acc1-7-1, suggesting that very-long-chain fatty acid synthesis is required to maintain a functional nuclear envelope.


Assuntos
Acetil-CoA Carboxilase/genética , Ácidos Graxos/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Saccharomyces cerevisiae/metabolismo , Acetil-CoA Carboxilase/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Proteínas Nucleares/metabolismo , RNA Fúngico/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética
13.
Mol Cell Biol ; 16(9): 5139-46, 1996 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-8756671

RESUMO

An enormous variety of primary and secondary mRNA structures are compatible with export from the nucleus to the cytoplasm. Therefore, there seems to be a mechanism for RNA export which is independent of sequence recognition. There nevertheless is likely to be some relatively uniform mechanism which allows transcripts to be packaged as ribonucleoprotein particles, to gain access to the periphery of the nucleus and ultimately to translocate across nuclear pores. To study these events, we and others have generated temperature-sensitive recessive mRNA transport (mtr) mutants of Saccharomyces cerevisiae which accumulate poly(A)+ RNA in the nucleus at 37 degrees C. Several of the corresponding genes have been cloned. Upon depletion of one of these proteins, Mtr4p, conspicuous amounts of nuclear poly(A)+ RNA accumulate in association with the nucleolus. Corresponding dense material is also seen by electron microscopy. MTR4 is essential for growth and encodes a novel nuclear protein with a size of approximately 120 kDa. Mtr4p shares characteristic motifs with DEAD-box RNA helicases and associates with RNA. It therefore may well affect RNA conformation. It shows extensive homology to a human predicted gene product and the yeast antiviral protein Ski2p. Critical residues of Mtr4p, including the mtr4-1 point mutation, have been identified. Mtr4p may serve as a chaperone which translocates or normalizes the structure of mRNAs in preparation for export.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas Nucleares/fisiologia , RNA Helicases , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/fisiologia , Sequências Reguladoras de Ácido Nucleico , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Clonagem Molecular , RNA Helicases DEAD-box , Ribonucleoproteínas Nucleares Heterogêneas , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/isolamento & purificação , Conformação de Ácido Nucleico , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/isolamento & purificação , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
14.
RNA ; 2(6): 535-50, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8718683

RESUMO

The yeast Prp9p, Prp11p, Prp21p proteins form a multimolecular complex identified as the SF3a splicing factor in higher eukaryotes. This factor is required for the assembly of the prespliceosome. Prp21p interacts with both Prp9p and Prp11p, but the molecular basis of these interactions is unknown. Prp21p, its human homologue, and the so-called SWAP proteins share a tandemly repeated motif, the surp module. Given the evolutionary conservation and the role of SWAP proteins as splicing regulators, it has been proposed that surp motifs are essential for interactions between Prp21p and other splicing factors. In order to characterize functional domains of Prp21p and to identify potential additional functions of this protein, we isolated a series of heat-sensitive prp21 mutants. Our results indicate that prp21 heat-sensitive mutations are associated with defects in the interaction with Prp9p, but not with Prp11p. Interestingly, most heat-sensitive point mutants associate a strong splicing defect with a pre-mRNA nuclear export phenotype, as does the prp9-1 heat-sensitive mutant. Deletion analyses led to the definition of domains required for viability. These domains are responsible for the interaction with Prp9p and Prp11p and are conserved through evolution. They do not include the most conserved surp1 module, suggesting that the conservation of this motif in two families of proteins may reflect a still unknown function dispensable in yeast under standard conditions.


Assuntos
Evolução Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sítios de Ligação , Divisão Celular , Sequência Conservada , Proteínas Fúngicas/genética , Temperatura Alta , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação Puntual , Precursores de RNA/metabolismo , Fatores de Processamento de RNA , Saccharomyces cerevisiae/química , Alinhamento de Sequência , Deleção de Sequência , Spliceossomos/genética , Spliceossomos/metabolismo
15.
J Biol Chem ; 271(22): 12879-84, 1996 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-8663031

RESUMO

Glycosyl phosphatidylinositol (GPI) lipids function as anchors of membrane proteins, and free GPI units serve as intermediates along the path of GPI-anchor biosynthesis. By using in vivo cell surface biotinylation, we show that free GPIs: 1) can exit the rough endoplasmic reticulum and are present on the surface of a murine EL-4 T-lymphoma and a human carcinoma cell (HeLa), 2) arrive at the cell surface in a time and temperature-dependent fashion, and 3) are built on a base-labile glycerol backbone, unlike GPI anchors of surface proteins of the same cells. The free GPIs described in this study may serve as a source of hormone-sensitive phosphoinositol glycans. The absence of free GPIs from the cell surface may also account for the growth advantage of blood cells in paroxysmal nocturnal hemoglobinuria.


Assuntos
Glicosilfosfatidilinositóis/metabolismo , Animais , Transporte Biológico , Biotina/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático Rugoso/metabolismo , Células HeLa , Humanos , Camundongos , Células Tumorais Cultivadas
16.
Mol Biol Cell ; 6(9): 1103-10, 1995 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-8534909

RESUMO

Synthesis of mRNA and rRNA occur in the chromatin-rich nucleoplasm and the nucleolus, respectively. Nevertheless, we here report that a Saccharomyces cerevisiae gene, MTR3, previously implicated in mRNA transport, codes for a novel essential 28-kDa nucleolar protein. Moreover, in mtr3-1 the accumulated polyA+ RNA actually colocalizes with nucleolar antigens, the nucleolus becomes somewhat disorganized, and rRNA synthesis and processing are inhibited. A strain with a ts conditional mutation in RNA polymerase I also shows nucleolar accumulation of polyA+ RNA, whereas strains with mutations in the nucleolar protein Nop1p do not. Thus, in several mutant backgrounds, when mRNA cannot be exported i concentrates in the nucleolus. mRNA may normally encounter nucleolar components before export and proteins such as Mtr3p may be critical for export of both mRNA and ribosomal subunits.


Assuntos
Nucléolo Celular/metabolismo , Exonucleases , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Proteínas Nucleares/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Transporte Biológico , Clonagem Molecular , Complexo Multienzimático de Ribonucleases do Exossomo , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Proteínas Nucleares/genética , RNA Polimerase II/metabolismo , RNA Ribossômico/metabolismo , Saccharomyces cerevisiae/genética
17.
Proc Natl Acad Sci U S A ; 92(16): 7372-5, 1995 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-7638199

RESUMO

The mechanisms of export of RNA from the nucleus are poorly understood; however, several viral proteins modulate nucleocytoplasmic transport of mRNA. Among these are the adenoviral proteins E1B-55kDa and E4-34kDa. Late in infection, these proteins inhibit export of host transcripts and promote export of viral mRNA. To investigate the mechanism by which these proteins act, we have expressed them in Saccharomyces cerevisiae. Overexpression of either or both proteins has no obvious effect on cell growth. By contrast, overexpression of E1B-55kDa bearing a nuclear localization signal (NLS) dramatically inhibits cell growth. In this situation, the NLS-E1B-55kDa protein is localized to the nuclear periphery, fibrous material is seen in the nucleoplasm, and poly(A)+ RNA accumulates in the nucleus. Simultaneous overexpression of E4-34kDa bearing or lacking an NLS does not modify these effects. We discuss the mechanisms of selective mRNA transport.


Assuntos
Proteínas E1B de Adenovirus/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Adenoviridae/genética , Adenoviridae/metabolismo , Proteínas E1B de Adenovirus/genética , Proteínas E4 de Adenovirus/genética , Proteínas E4 de Adenovirus/metabolismo , Sequência de Aminoácidos , Transporte Biológico Ativo , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Clonagem Molecular , Expressão Gênica , Microscopia Eletrônica , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura
18.
Mol Biol Cell ; 6(4): 357-70, 1995 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-7626803

RESUMO

Nucleocytoplasmic transport of mRNA is vital to gene expression and may prove to be key to its regulation. Genetic approaches in Saccharomyces cerevisiae have led to the identification of conditional mutants defective in mRNA transport. Mutations in approximately two dozen genes result in accumulation of transcripts, trapped at various sites in the nucleus, as detected by in situ hybridization. Phenotypic and molecular analyses of many of these mRNA transport mutants suggest that, in yeast, the function of the nucleus is not limited to the biogenesis of pre-ribosomes but may also be important for transport of poly(A)+ RNA. A similar function of the animal cell nucleolus is suggested by several observations.


Assuntos
Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Transporte Biológico/genética , Citoplasma/metabolismo , Genes Fúngicos/fisiologia , Mamíferos , Membrana Nuclear/fisiologia , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética
19.
Trends Cell Biol ; 5(1): 5-8, 1995 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14731422

RESUMO

Numerous Ras-like GTPases function as molecular switches in the cytoplasm, but only one has been identified in the nucleus. This nuclear GTPase and its homologues are known in both yeasts and higher organisms and in all cases they are regulated by guanine-nucleotide-exchange factors. The 'nuclear GTPase cycle' created by these components is implicated in mRNA transport from and protein import to the nucleus, as well as in DNA replication, RNA processing and the regulation of the cell cycle. In this article, Alan Tartakoff and Roger Schneiter propose that this GTPase cycle regulates dispersive functions in the nucleoplasm, an idea that explains many of the observed effects of disrupting the cycle.

20.
J Cell Sci ; 108 ( Pt 1): 265-72, 1995 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-7738104

RESUMO

We have identified a temperature-sensitive mutant of Saccharomyces cerevisiae (npl3) that accumulates polyadenylated RNA in the nucleus at 37 degrees C, as judged by in situ hybridization. The strong nuclear signal is not simply due to increased cytoplasmic turnover of mRNA, as reincubation at 37 degrees C with an RNA polymerase inhibitor shows no diminution in the in situ signal. Over several hours at 37 degrees C, the average poly(A) tail length increases and a characteristic ultrastructural alteration of the nucleoplasm occurs. Cloning and sequencing indicate that the corresponding gene is NPL3/NOP3, which codes for a nucleolar/nuclear protein implicated in protein import into the nucleus (Bossie et al. (1992). Mol. Biol. Cell 3, 875-893) and in rRNA maturation (Russell and Tollervey (1992). J. Cell Biol. 119, 737-747). NPL3 includes bipartite RNA recognition motifs (RRM) and a Gly-Arg repeat domain, as in several nucleolar proteins. A point mutation adjacent to one of the RRM has been identified in the ts copy of the gene. Although this protein is not concentrated in nuclear pores, NPL3 is implicated in both import and export from the nucleus. Judging from the site of the npl3 mutation and since the block in RNA export can be detected prior to an obvious nuclear import defect in npl3, the defect in RNA export may be primary. Since other mutants that interrupt RNA export do not block protein import, the NPL3 protein itself appears to be implicated in protein import.


Assuntos
Núcleo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Núcleo Celular/ultraestrutura , Clonagem Molecular , Citoplasma/metabolismo , Primers do DNA , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/isolamento & purificação , Genes Fúngicos , Teste de Complementação Genética , Histonas/análise , Histonas/metabolismo , Hibridização In Situ , Cinética , Metionina/metabolismo , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/biossíntese , Proteínas Nucleares/isolamento & purificação , Reação em Cadeia da Polimerase , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Temperatura , Uridina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...