Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674493

RESUMO

Climate change is deeply impacting the food chain production, lowering quality and yield. In this context, the international scientific community has dedicated many efforts to enhancing resilience and sustainability in agriculture. Italy is among the main European producers of several fruit trees; therefore, national research centers and universities undertook several initiatives to maintain the specificity of the 'Made in Italy' label. Despite their importance, fruit crops are suffering from difficulties associated with the conventional breeding approaches, especially in terms of financial commitment, land resources availability, and long generation times. The 'new genomic techniques' (NGTs), renamed in Italy as 'technologies for assisted evolution' (TEAs), reduce the time required to obtain genetically improved cultivars while precisely targeting specific DNA sequences. This review aims to illustrate the role of the Italian scientific community in the use of NGTs, with a specific focus on Citrus, grapevine, apple, pear, chestnut, strawberry, peach, and kiwifruit. For each crop, the key genes and traits on which the scientific community is working, as well as the technological improvements and advancements on the regeneration of local varieties, are presented. Lastly, a focus is placed on the legal aspects in the European and in Italian contexts.


Assuntos
Frutas , Árvores , Árvores/genética , Frutas/genética , Melhoramento Vegetal/métodos , Genoma de Planta , Genômica
2.
Foods ; 13(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38201166

RESUMO

Product optimisation is one of the most crucial phases in the new product development or launch process. This work proposes applying penalty analysis to investigate the impact of not just-about-right (JAR) sensorial aspects on willingness to pay (WTP) and an overall liking for a local Italian ancient pear variety and to verify the mediating role of pleasantness in the relationship between not-JAR sensory attributes and consumers' WTP using structural equation model (SEM). One hundred and twelve non-expert participants recruited during an in-store experiment evaluated overall liking and JAR attributes and were involved in an in-field experimental auction based on the non-hypothetical Becker-DeGroot-Marshak (BDM) mechanism. The participants' average WTP for the sample was EUR 3.18 per kilogramme. Only juiciness and sourness significantly impact consumers' overall liking but not on consumers' WTP. Moreover, pleasantness did not mediate the relationship between non-balanced sensorial aspects and WTP. In conclusion, the penalty analysis for attributes not being JAR in monetary and hedonic terms is a beneficial research approach for a deep-inside evaluation of the potentiality of the product in the marketplace, providing helpful directions for product optimisation. Results show market potential for the local ancient pear variety 'Angelica'.

3.
Front Plant Sci ; 13: 838370, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371156

RESUMO

Apricot breeding programs could be strongly improved by the availability of molecular markers linked to the main fruit quality traits. Fruit acidity is one of the key factors in consumer acceptance, but despite its importance, the molecular bases of this trait are still poorly understood. In order to increase the genetic knowledge on the fruit acidity, an F1 apricot population ('Lito' × 'BO81604311') has been phenotyped for titratable acidity and juice pH for the three following years. In addition, the contents of the main organic acids of the juice (malate, citrate, and quinate) were also evaluated. A Gaussian distribution was observed for most of the traits in this progeny, confirming their quantitative inheritance. An available simple sequence repeat (SSR)-based molecular map, implemented with new markers in specific genomic regions, was used to perform a quantitative trait loci (QTL) analysis. The molecular map was also anchored to the recently published apricot genome sequence of 'Stella.' Several major QTLs linked to fruit acidity-related traits have been identified both in the 'Lito' (no. 21) and 'BO81604311' (no. 13), distributed in five linkage groups (LG 4, 5, 6, 7, and 8). Some of these QTLs show good stability between years and their linked markers were used to identify candidate genes in specific QTLs genomic regions.

4.
G3 (Bethesda) ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34893831

RESUMO

Genomic selection is an attractive strategy for apple breeding that could reduce the length of breeding cycles. A possible limitation to the practical implementation of this approach lies in the creation of a training set large and diverse enough to ensure accurate predictions. In this study, we investigated the potential of combining two available populations, i.e., genetic resources and elite material, in order to obtain a large training set with a high genetic diversity. We compared the predictive ability of genomic predictions within-population, across-population or when combining both populations, and tested a model accounting for population-specific marker effects in this last case. The obtained predictive abilities were moderate to high according to the studied trait and small increases in predictive ability could be obtained for some traits when the two populations were combined into a unique training set. We also investigated the potential of such a training set to predict hybrids resulting from crosses between the two populations, with a focus on the method to design the training set and the best proportion of each population to optimize predictions. The measured predictive abilities were very similar for all the proportions, except for the extreme cases where only one of the two populations was used in the training set, in which case predictive abilities could be lower than when using both populations. Using an optimization algorithm to choose the genotypes in the training set also led to higher predictive abilities than when the genotypes were chosen at random. Our results provide guidelines to initiate breeding programs that use genomic selection when the implementation of the training set is a limitation.


Assuntos
Malus , Genoma , Genômica/métodos , Genótipo , Malus/genética , Modelos Genéticos , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Seleção Genética
5.
Antioxidants (Basel) ; 9(8)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731644

RESUMO

Sweet cherries (Prunus avium L.) are highly appreciated fruits for their taste, color, nutritional value, and beneficial health effects. In this work, seven new cultivars of sweet cherry were investigated for their main quality traits and nutraceutical value. The phytochemical profile of three classes of phenolic compounds and the antioxidant activity of the new cultivars were investigated through high-performance liquid chromatography with diode array detection (HPLC-DAD) and spectrophotometric assays, respectively, and compared with those of commonly commercialized cultivars. Cyanidine-3-O-rutinoside was the main anthocyanin in all genotypes, and its levels in some new cultivars were about three-fold higher than in commercial ones. The ORAC-assayed antioxidant capacity was positively correlated with the total anthocyanin index. The nutraceutical value of the new cultivars was investigated in terms of antioxidant/neuroprotective capacity in neuron-like SH-SY5Y cells. Results demonstrated that the new cultivars were more effective in counteracting oxidative stress and were also able to upregulate brain-derived neurotrophic factor (BDNF), a pro-survival neurotrophin, suggesting their potential pleiotropic role in counteracting neurodegenerations.

6.
Plant Dis ; 104(8): 2074-2081, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32525450

RESUMO

Apple scab, caused by Venturia inaequalis, is a major fungal disease worldwide. Cultivation of scab-resistant cultivars would reduce the chemical footprint of apple production. However, new apple cultivars carrying durable resistances should be developed to prevent or at least slow the breakdown of resistance against races of V. inaequalis. One way to achieve durable resistance is to pyramid multiple scab resistance genes in a cultivar. The choice of the resistance genes to be combined in the pyramids should take into account the frequency of resistance breakdown and the geographical distribution of apple scab isolates able to cause such breakdowns. In order to acquire this information and to make it available to apple breeders, the VINQUEST project (www.vinquest.ch) was initiated in 2009. Ten years after launching this project, 24 partners from 14 countries regularly contribute data. From 2009 to 2018, nearly 9,000 data points have been collected. This information has been used to identify the most promising apple scab resistance genes for developing cultivars with durable resistance, which to date are: Rvi5, Rvi11, Rvi12, Rvi14, and Rvi15. As expected, Rvi1, together with Rvi3 and Rvi8, were often overcome, and have little value for scab resistance breeding. Rvi10 may also belong to this group. On the other hand, Rvi2, Rvi4, Rvi6, Rvi7, Rvi9, and Rvi13 are still useful for breeding, but their use is recommended only in extended pyramids of ≥3 resistance genes.


Assuntos
Ascomicetos , Malus/genética , Cruzamento , Genes de Plantas , Doenças das Plantas
7.
BMC Plant Biol ; 20(1): 2, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31898487

RESUMO

BACKGROUND: Apple (Malus x domestica Borkh.) is one of the most important fruit tree crops of temperate areas, with great economic and cultural value. Apple cultivars can be maintained for centuries in plant collections through grafting, and some are thought to date as far back as Roman times. Molecular markers provide a means to reconstruct pedigrees and thus shed light on the recent history of migration and trade of biological materials. The objective of the present study was to identify relationships within a set of over 1400 mostly old apple cultivars using whole-genome SNP data (~ 253 K SNPs) in order to reconstruct pedigrees. RESULTS: Using simple exclusion tests, based on counting the number of Mendelian errors, more than one thousand parent-offspring relations and 295 complete parent-offspring families were identified. Additionally, a grandparent couple was identified for the missing parental side of 26 parent-offspring pairings. Among the 407 parent-offspring relations without a second identified parent, 327 could be oriented because one of the individuals was an offspring in a complete family or by using historical data on parentage or date of recording. Parents of emblematic cultivars such as 'Ribston Pippin', 'White Transparent' and 'Braeburn' were identified. The overall pedigree combining all the identified relationships encompassed seven generations and revealed a major impact of two Renaissance cultivars of French and English origin, namely 'Reinette Franche' and 'Margil', and one North-Eastern Europe cultivar from the 1700s, 'Alexander'. On the contrary, several older cultivars, from the Middle Ages or the Roman times, had no, or only single, identifiable offspring in the set of studied accessions. Frequent crosses between cultivars originating from different European regions were identified, especially from the nineteenth century onwards. CONCLUSIONS: The availability of over 1400 apple genotypes, previously filtered for genetic uniqueness and providing a broad representation of European germplasm, has been instrumental for the success of this large pedigree reconstruction. It enlightens the history of empirical selection and recent breeding of apple cultivars in Europe and provides insights to speed-up future breeding and selection.


Assuntos
Genoma de Planta , Malus/genética , Polimorfismo de Nucleotídeo Único/genética , Cruzamento , Europa (Continente) , Genótipo , Técnicas de Genotipagem/métodos , Linhagem , Sequenciamento Completo do Genoma
8.
Front Plant Sci ; 10: 1576, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31867032

RESUMO

Sharka, a common disease among most stone fruit crops, is caused by the Plum Pox Virus (PPV). Resistant genotypes have been found in apricot (Prunus armeniaca L.), one of which-the cultivar 'Lito' heterozygous for the resistance-has been used to map a major quantitative trait locus (QTL) on linkage group 1, following a pseudo-test-cross mating design with 231 individuals. In addition, 19 SNP markers were selected from among the hundreds previously developed, which allowed the region to be limited to 236 kb on chromosome 1. A 'Lito' bacterial artificial chromosome (BAC) library was produced, screened with markers of the region, and positive BAC clones were sequenced. Resistant (R) and susceptible (S) haplotypes were assembled independently. To refine the assembly, the whole genome of 'Lito' was sequenced to high coverage (98×) using PacBio technology, enabling the development of a detailed assembly of the region that was able to predict and annotate the genes in the QTL region. The selected cultivar 'Lito' allowed not only to discriminate structural variants between the two haplotypic regions but also to distinguish specific allele expression, contributing towards mining the PPVres locus. In light of these findings, genes previously indicated (i.e., MATHd genes) to have a possible role in PPV resistance were further analyzed, and new candidates were discussed. Although the results are not conclusive, the accurate and independent assembly of R and S haplotypes of 'Lito' is a valuable resource to predict and test alternative transcription and regulation mechanisms underpinning PPV resistance.

9.
Front Plant Sci ; 8: 1923, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29176988

RESUMO

Deciphering the genetic control of flowering and ripening periods in apple is essential for breeding cultivars adapted to their growing environments. We implemented a large Genome-Wide Association Study (GWAS) at the European level using an association panel of 1,168 different apple genotypes distributed over six locations and phenotyped for these phenological traits. The panel was genotyped at a high-density of SNPs using the Axiom®Apple 480 K SNP array. We ran GWAS with a multi-locus mixed model (MLMM), which handles the putatively confounding effect of significant SNPs elsewhere on the genome. Genomic regions were further investigated to reveal candidate genes responsible for the phenotypic variation. At the whole population level, GWAS retained two SNPs as cofactors on chromosome 9 for flowering period, and six for ripening period (four on chromosome 3, one on chromosome 10 and one on chromosome 16) which, together accounted for 8.9 and 17.2% of the phenotypic variance, respectively. For both traits, SNPs in weak linkage disequilibrium were detected nearby, thus suggesting the existence of allelic heterogeneity. The geographic origins and relationships of apple cultivars accounted for large parts of the phenotypic variation. Variation in genotypic frequency of the SNPs associated with the two traits was connected to the geographic origin of the genotypes (grouped as North+East, West and South Europe), and indicated differential selection in different growing environments. Genes encoding transcription factors containing either NAC or MADS domains were identified as major candidates within the small confidence intervals computed for the associated genomic regions. A strong microsynteny between apple and peach was revealed in all the four confidence interval regions. This study shows how association genetics can unravel the genetic control of important horticultural traits in apple, as well as reduce the confidence intervals of the associated regions identified by linkage mapping approaches. Our findings can be used for the improvement of apple through marker-assisted breeding strategies that take advantage of the accumulating additive effects of the identified SNPs.

10.
Plant Sci ; 264: 57-68, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28969803

RESUMO

Allergy to freshly consumed apple fruits is often associated to pollinosis and manifested as oral allergy syndrome (OAS). The allergenic properties of apple varieties differ greatly, spanning from low allergenic to high allergenic varieties. The knowledge of the genetic determinants for allergenicity has been of great interest in scientific community for several years, but the molecular mechanisms involved are still little understood. Here, factors putatively involved in allergenicity were investigated at biochemical and molecular level in pollen and in fruits of apple varieties differing in their allergenic potential. Among putative sensitizing factors, transglutaminase (TGase) and phospholipase A2 (PLA2) were considered together with reactive oxygen species (ROS) and known apple allergen genes, with particular attention devoted to the Mal d 1 gene family, the most important one in sensitization. We found that the expression of some allergen genes and the activities of TGase, PLA2 and ROS producing enzyme are lower in the hypo-allergenic variety 'Durello di Forlì' in comparison with the high-allergenic genotypes 'Gala' and 'Florina'. These results highlight correlations among allergen expressions, enzymatic activities and apple cultivars; these data underline the possibility that some of them could be used in the future as markers for allergenicity.


Assuntos
Alérgenos/genética , Hipersensibilidade Alimentar , Malus/genética , Alérgenos/efeitos adversos , Alérgenos/imunologia , Frutas/efeitos adversos , Frutas/genética , Frutas/imunologia , Humanos , Malus/efeitos adversos , Malus/imunologia , Pólen/efeitos adversos , Pólen/genética , Pólen/imunologia
11.
BMC Genomics ; 18(1): 225, 2017 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-28284188

RESUMO

BACKGROUND: The availability of the peach genome sequence has fostered relevant research in peach and related Prunus species enabling the identification of genes underlying important horticultural traits as well as the development of advanced tools for genetic and genomic analyses. The first release of the peach genome (Peach v1.0) represented a high-quality WGS (Whole Genome Shotgun) chromosome-scale assembly with high contiguity (contig L50 214.2 kb), large portions of mapped sequences (96%) and high base accuracy (99.96%). The aim of this work was to improve the quality of the first assembly by increasing the portion of mapped and oriented sequences, correcting misassemblies and improving the contiguity and base accuracy using high-throughput linkage mapping and deep resequencing approaches. RESULTS: Four linkage maps with 3,576 molecular markers were used to improve the portion of mapped and oriented sequences (from 96.0% and 85.6% of Peach v1.0 to 99.2% and 98.2% of v2.0, respectively) and enabled a more detailed identification of discernible misassemblies (10.4 Mb in total). The deep resequencing approach fixed 859 homozygous SNPs (Single Nucleotide Polymorphisms) and 1347 homozygous indels. Moreover, the assembled NGS contigs enabled the closing of 212 gaps with an improvement in the contig L50 of 19.2%. CONCLUSIONS: The improved high quality peach genome assembly (Peach v2.0) represents a valuable tool for the analysis of the genetic diversity, domestication, and as a vehicle for genetic improvement of peach and related Prunus species. Moreover, the important phylogenetic position of peach and the absence of recent whole genome duplication (WGD) events make peach a pivotal species for comparative genomics studies aiming at elucidating plant speciation and diversification processes.


Assuntos
Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , Ligação Genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Prunus persica/genética , Genômica/métodos , Técnicas de Genotipagem , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único
12.
Hortic Res ; 3: 16057, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27917289

RESUMO

Quantitative trait loci (QTL) mapping approaches rely on the correct ordering of molecular markers along the chromosomes, which can be obtained from genetic linkage maps or a reference genome sequence. For apple (Malus domestica Borkh), the genome sequence v1 and v2 could not meet this need; therefore, a novel approach was devised to develop a dense genetic linkage map, providing the most reliable marker-loci order for the highest possible number of markers. The approach was based on four strategies: (i) the use of multiple full-sib families, (ii) the reduction of missing information through the use of HaploBlocks and alternative calling procedures for single-nucleotide polymorphism (SNP) markers, (iii) the construction of a single backcross-type data set including all families, and (iv) a two-step map generation procedure based on the sequential inclusion of markers. The map comprises 15 417 SNP markers, clustered in 3 K HaploBlock markers spanning 1 267 cM, with an average distance between adjacent markers of 0.37 cM and a maximum distance of 3.29 cM. Moreover, chromosome 5 was oriented according to its homoeologous chromosome 10. This map was useful to improve the apple genome sequence, design the Axiom Apple 480 K SNP array and perform multifamily-based QTL studies. Its collinearity with the genome sequences v1 and v3 are reported. To our knowledge, this is the shortest published SNP map in apple, while including the largest number of markers, families and individuals. This result validates our methodology, proving its value for the construction of integrated linkage maps for any outbreeding species.

13.
J Agric Food Chem ; 64(48): 9224-9236, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27933989

RESUMO

Freshly consumed apples (Malus domestica L. Borkh) can cause allergic reactions because of the presence of four classes of allergens. Knowledge of the genetic factors affecting the allergenic potential of apples would provide important information for the selection of hypoallergenic genotypes, which can be combined with the adoption of new agronomical practices to produce fruits with a reduced amount of allergens. In the present research, a multiple analytical approach was adopted to characterize the allergenic potential of 24 apple varieties released at different ages (pre- and post-green revolution). A specific workflow was set up including protein quantification by means of polyclonal antibodies, immunological analyses with sera of allergic subjects, enzymatic assays, clinical assessments on allergic patients, and gene expression assays on fruit samples. Taken as a whole, the results indicate that most of the less allergenic genotypes were found among those deriving from selection processes carried out prior to the so-called "green revolution".


Assuntos
Alérgenos/imunologia , Antígenos de Plantas/imunologia , Hipersensibilidade Alimentar/imunologia , Frutas/química , Malus/genética , Proteínas de Plantas/imunologia , Genótipo , Humanos , Malus/química
14.
BMC Plant Biol ; 16(1): 130, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27277533

RESUMO

BACKGROUND: The amount and structure of genetic diversity in dessert apple germplasm conserved at a European level is mostly unknown, since all diversity studies conducted in Europe until now have been performed on regional or national collections. Here, we applied a common set of 16 SSR markers to genotype more than 2,400 accessions across 14 collections representing three broad European geographic regions (North + East, West and South) with the aim to analyze the extent, distribution and structure of variation in the apple genetic resources in Europe. RESULTS: A Bayesian model-based clustering approach showed that diversity was organized in three groups, although these were only moderately differentiated (FST = 0.031). A nested Bayesian clustering approach allowed identification of subgroups which revealed internal patterns of substructure within the groups, allowing a finer delineation of the variation into eight subgroups (FST = 0.044). The first level of stratification revealed an asymmetric division of the germplasm among the three groups, and a clear association was found with the geographical regions of origin of the cultivars. The substructure revealed clear partitioning of genetic groups among countries, but also interesting associations between subgroups and breeding purposes of recent cultivars or particular usage such as cider production. Additional parentage analyses allowed us to identify both putative parents of more than 40 old and/or local cultivars giving interesting insights in the pedigree of some emblematic cultivars. CONCLUSIONS: The variation found at group and subgroup levels may reflect a combination of historical processes of migration/selection and adaptive factors to diverse agricultural environments that, together with genetic drift, have resulted in extensive genetic variation but limited population structure. The European dessert apple germplasm represents an important source of genetic diversity with a strong historical and patrimonial value. The present work thus constitutes a decisive step in the field of conservation genetics. Moreover, the obtained data can be used for defining a European apple core collection useful for further identification of genomic regions associated with commercially important horticultural traits in apple through genome-wide association studies.


Assuntos
Fluxo Gênico , Variação Genética , Malus/genética , Europa (Continente) , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Genótipo , Malus/classificação , Malus/embriologia , Malus/metabolismo , Repetições de Microssatélites , Filogenia
16.
BMC Plant Biol ; 15: 150, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26084469

RESUMO

BACKGROUND: Russeting is a disorder developed by apple fruits that consists of cuticle cracking followed by the replacement of the epidermis by a corky layer that protects the fruit surface from water loss and pathogens. Although influenced by many environmental conditions and orchard management practices, russeting is under genetic control. The difficulty in classifying offspring and consequent variable segregation ratios have led several authors to conclude that more than one genetic determinant could be involved, although some evidence favours a major gene (Ru). RESULTS: In this study we report the mapping of a major genetic russeting determinant on linkage group 12 of apple as inferred from the phenotypic observation in a segregating progeny derived from 'Renetta Grigia di Torriana', the construction of a 20 K Illumina SNP chip based genetic map, and QTL analysis. Recombination analysis in two mapping populations restricted the region of interest to approximately 400 Kb. Of the 58 genes predicted from the Golden Delicious sequence, a putative ABCG family transporter has been identified. Within a small set of russeted cultivars tested with markers of the region, only six showed the same haplotype of 'Renetta Grigia di Torriana'. CONCLUSIONS: A major determinant (Ru_RGT) for russeting development putatively involved in cuticle organization is proposed as a candidate for controlling the trait. SNP and SSR markers tightly co-segregating with the Ru_RGT locus may assist the breeder selection. The observed segregations and the analysis of the 'Renetta Grigia di Torriana' haplotypic region in a panel of russeted and non-russeted cultivars may suggest the presence of other determinants for russeting in apple.


Assuntos
Mapeamento Cromossômico , Ligação Genética , Malus/genética , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Segregação de Cromossomos/genética , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Bases de Dados como Assunto , Estudos de Associação Genética , Loci Gênicos , Marcadores Genéticos , Haplótipos/genética , Fenótipo
17.
PLoS One ; 9(3): e90574, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24595269

RESUMO

Nectarines play a key role in peach industry; the fuzzless skin has implications for consumer acceptance. The peach/nectarine (G/g) trait was described as monogenic and previously mapped on chromosome 5. Here, the position of the G locus was delimited within a 1.1 cM interval (635 kb) based on linkage analysis of an F2 progeny from the cross 'Contender' (C, peach) x 'Ambra' (A, nectarine). Careful inspection of the genes annotated in the corresponding genomic sequence (Peach v1.0), coupled with variant discovery, led to the identification of MYB gene PpeMYB25 as a candidate for trichome formation on fruit skin. Analysis of genomic re-sequencing data from five peach/nectarine accessions pointed to the insertion of a LTR retroelement in exon 3 of the PpeMYB25 gene as the cause of the recessive glabrous phenotype. A functional marker (indelG) developed on the LTR insertion cosegregated with the trait in the CxA F2 progeny and was validated on a broad panel of genotypes, including all known putative donors of the nectarine trait. This marker was shown to efficiently discriminate between peach and nectarine plants, indicating that a unique mutational event gave rise to the nectarine trait and providing a useful diagnostic tool for early seedling selection in peach breeding programs.


Assuntos
Cruzamento/métodos , Cromossomos de Plantas/genética , Genes de Plantas/genética , Fenótipo , Prunus/genética , Tricomas/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Primers do DNA/genética , Marcadores Genéticos/genética , Reação em Cadeia da Polimerase , Retroelementos/genética
18.
BMC Plant Biol ; 13: 166, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24148786

RESUMO

BACKGROUND: Maturity date (MD) is a crucial factor for marketing of fresh fruit, especially those with limited shelf-life such as peach (Prunus persica L. Batsch): selection of several cultivars with differing MD would be advantageous to cover and extend the marketing season. Aims of this work were the fine mapping and identification of candidate genes for the major maturity date locus previously identified on peach linkage group 4. To improve genetic resolution of the target locus two F2 populations derived from the crosses Contender x Ambra (CxA, 306 individuals) and PI91459 (NJ Weeping) x Bounty (WxBy, 103 individuals) were genotyped with the Sequenom and 9K Illumina Peach Chip SNP platforms, respectively. RESULTS: Recombinant individuals from the WxBy F2 population allowed the localisation of maturity date locus to a 220 kb region of the peach genome. Among the 25 annotated genes within this interval, functional classification identified ppa007577m and ppa008301m as the most likely candidates, both encoding transcription factors of the NAC (NAM/ATAF1, 2/CUC2) family. Re-sequencing of the four parents and comparison with the reference genome sequence uncovered a deletion of 232 bp in the upstream region of ppa007577m that is homozygous in NJ Weeping and heterozygous in Ambra, Bounty and the WxBy F1 parent. However, this variation did not segregate in the CxA F2 population being the CxA F1 parent homozygous for the reference allele. The second gene was thus examined as a candidate for maturity date. Re-sequencing of ppa008301m, showed an in-frame insertion of 9 bp in the last exon that co-segregated with the maturity date locus in both CxA and WxBy F2 populations. CONCLUSIONS: Using two different segregating populations, the map position of the maturity date locus was refined from 3.56 Mb to 220 kb. A sequence variant in the NAC gene ppa008301m was shown to co-segregate with the maturity date locus, suggesting this gene as a candidate controlling ripening time in peach. If confirmed on other genetic materials, this variant may be used for marker-assisted breeding of new cultivars with differing maturity date.


Assuntos
Estudos de Associação Genética , Loci Gênicos/genética , Mapeamento Físico do Cromossomo , Prunus/crescimento & desenvolvimento , Prunus/genética , Sequência de Aminoácidos , Cruzamentos Genéticos , Genoma de Planta/genética , Genótipo , Mutação INDEL/genética , Escore Lod , Anotação de Sequência Molecular , Dados de Sequência Molecular , Fenótipo , Proteínas de Plantas/química , Polimorfismo Genético , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Recombinação Genética/genética , Alinhamento de Sequência , Fatores de Transcrição/química
19.
Nat Genet ; 45(5): 487-94, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23525075

RESUMO

Rosaceae is the most important fruit-producing clade, and its key commercially relevant genera (Fragaria, Rosa, Rubus and Prunus) show broadly diverse growth habits, fruit types and compact diploid genomes. Peach, a diploid Prunus species, is one of the best genetically characterized deciduous trees. Here we describe the high-quality genome sequence of peach obtained from a completely homozygous genotype. We obtained a complete chromosome-scale assembly using Sanger whole-genome shotgun methods. We predicted 27,852 protein-coding genes, as well as noncoding RNAs. We investigated the path of peach domestication through whole-genome resequencing of 14 Prunus accessions. The analyses suggest major genetic bottlenecks that have substantially shaped peach genome diversity. Furthermore, comparative analyses showed that peach has not undergone recent whole-genome duplication, and even though the ancestral triplicated blocks in peach are fragmentary compared to those in grape, all seven paleosets of paralogs from the putative paleoancestor are detectable.


Assuntos
Agricultura , Evolução Biológica , Variação Genética , Genoma de Planta/genética , Prunus/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Dados de Sequência Molecular , Polímeros/metabolismo , Propanóis/metabolismo , Prunus/classificação
20.
BMC Plant Biol ; 13: 51, 2013 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-23522122

RESUMO

BACKGROUND: A considerable number of individuals suffer from oral allergy syndrome (OAS) to apple, resulting in the avoidance of apple consumption. Apple cultivars differ greatly in their allergenic properties, but knowledge of the causes for such differences is incomplete. Mal d 1 is considered the major apple allergen. For Mal d 1, a wide range of isoallergens and variants exist, and they are encoded by a large gene family. To identify the specific proteins/genes that are potentially involved in the allergy, we developed a PCR assay to monitor the expression of each individual Mal d 1 gene. Gene-specific primer pairs were designed for the exploitation of sequence differences among Mal d 1 genes. The specificity of these primers was validated using both in silico and in vitro techniques. Subsequently, this assay was applied to the peel and flesh of fruits from the two cultivars 'Florina' and 'Gala'. RESULTS: We successfully developed gene-specific primer pairs for each of the 31 Mal d 1 genes and incorporated them into a qRT-PCR assay. The results from the application of the assay showed that 11 genes were not expressed in fruit. In addition, differential expression was observed among the Mal d 1 genes that were expressed in the fruit. Moreover, the expression levels were tissue and cultivar dependent. CONCLUSION: The assay developed in this study facilitated the first characterisation of the expression levels of all known Mal d 1 genes in a gene-specific manner. Using this assay on different fruit tissues and cultivars, we obtained knowledge concerning gene relevance in allergenicity. This study provides new perspectives for research on both plant breeding and immunotherapy.


Assuntos
Alérgenos/genética , Alérgenos/imunologia , Antígenos de Plantas/genética , Malus/genética , Malus/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Antígenos de Plantas/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...