Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39042020

RESUMO

Changes in the oxidative (redox) environment accompany idiopathic pulmonary fibrosis (IPF). S-glutathionylation of reactive protein cysteines is a post-translational event that transduces oxidant signals into biological responses. We recently demonstrated that increases in S-glutathionylation promote pulmonary fibrosis, which was mitigated by the deglutathionylating enzyme glutaredoxin (GLRX). However, the protein targets of S-glutathionylation that promote fibrogenesis remain unknown. In the present study we addressed whether the extracellular matrix is a target for S-glutathionylation. We discovered increases in collagen 1A1 S-glutathionylation (COL1A1-SSG) in lung tissues from IPF subjects compared to control subjects in association with increases in ER oxidoreductin 1 (ERO1A) and enhanced oxidation of ER-localized peroxiredoxin 4 (PRDX4) reflecting an increased oxidative environment of the endoplasmic reticulum (ER). Human lung fibroblasts exposed to transforming growth factor beta 1 (TGFB1) show increased secretion of COL1A1-SSG. Pharmacologic inhibition of ERO1A diminished oxidation of PRDX4, attenuated COL1A1-SSG and total COL1A1 levels and dampened fibroblast activation. Absence of Glrx enhanced COL1A1-SSG and overall COL1A1 secretion and promoted activation of mechanosensing pathways. Remarkably, COL1A1-SSG resulted in marked resistance to collagenase degradation. Compared to COL1, lung fibroblasts plated on COL1-SSG proliferated more rapidly, and increased expression of genes encoding extracellular matrix crosslinking enzymes and genes linked to mechanosensing pathways. Overall, these findings suggest that glutathione-dependent oxidation of COL1A1 occurs in settings of IPF in association with enhanced ER oxidative stress and may promote fibrotic remodeling due to increased resistance to collagenase-mediated degradation and fibroblast activation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...