Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(8): 086802, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34477427

RESUMO

We report the preparation and readout of multielectron high-spin states, a three-electron quartet, and a four-electron quintet, in a gate-defined GaAs/AlGaAs single quantum dot using spin filtering by quantum Hall edge states coupled to the dot. The readout scheme consists of mapping from multielectron to two-electron spin states and a subsequent two-electron spin readout, thus obviating the need to resolve dense multielectron energy levels. Using this technique, we measure the relaxations of the high-spin states and find them to be an order of magnitude faster than those of low-spin states. Numerical calculations of spin relaxation rates using the exact diagonalization method agree with the experiment. The technique developed here offers a new tool for the study and application of high-spin states in quantum dots.

2.
Phys Rev Lett ; 126(7): 070501, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33666445

RESUMO

We develop a coherent beam splitter for single electrons driven through two tunnel-coupled quantum wires by surface acoustic waves (SAWs). The output current through each wire oscillates with gate voltages to tune the tunnel coupling and potential difference between the wires. This oscillation is assigned to coherent electron tunneling motion that can be used to encode a flying qubit and is well reproduced by numerical calculations of time evolution of the SAW-driven single electrons. The oscillation visibility is currently limited to about 3%, but robust against decoherence, indicating that the SAW electron can serve as a novel platform for a solid-state flying qubit.

3.
Nano Lett ; 20(10): 7476-7481, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32897724

RESUMO

Magnetic Weyl semimetals attract considerable interest not only for their topological quantum phenomena but also as an emerging materials class for realizing quantum anomalous Hall effect in the two-dimensional limit. A shandite compound Co3Sn2S2 with layered kagome-lattices is one such material, where vigorous efforts have been devoted to synthesize the two-dimensional crystal. Here, we report a synthesis of Co3Sn2S2 thin flakes with a thickness of 250 nm by chemical vapor transport method. We find that this facile bottom-up approach allows the formation of large-sized Co3Sn2S2 thin flakes of high-quality, where we identify the largest electron mobility (∼2600 cm2 V-1 s-1) among magnetic topological semimetals, as well as the large anomalous Hall conductivity (∼1400 Ω-1 cm-1) and anomalous Hall angle (∼32%) arising from the Berry curvature. Our study provides a viable platform for studying high-quality thin flakes of magnetic Weyl semimetal and stimulate further research on unexplored topological phenomena in the two-dimensional limit.

4.
Phys Rev Lett ; 124(11): 117701, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32242710

RESUMO

We report implementation of a resonantly driven singlet-triplet spin qubit in silicon. The qubit is defined by the two-electron antiparallel spin states and universal quantum control is provided through a resonant drive of the exchange interaction at the qubit frequency. The qubit exhibits long T_{2}^{*} exceeding 1 µs that is limited by dephasing due to the ^{29}Si nuclei rather than charge noise thanks to the symmetric operation and a large micromagnet Zeeman field gradient. The randomized benchmarking shows 99.6% single gate fidelity which is the highest reported for singlet-triplet qubits.

5.
Nat Commun ; 11(1): 1144, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123167

RESUMO

While single-shot detection of silicon spin qubits is now a laboratory routine, the need for quantum error correction in a large-scale quantum computing device demands a quantum non-demolition (QND) implementation. Unlike conventional counterparts, the QND spin readout imposes minimal disturbance to the probed spin polarization and can therefore be repeated to extinguish measurement errors. Here, we show that an electron spin qubit in silicon can be measured in a highly non-demolition manner by probing another electron spin in a neighboring dot Ising-coupled to the qubit spin. The high non-demolition fidelity (99% on average) enables over 20 readout repetitions of a single spin state, yielding an overall average measurement fidelity of up to 95% within 1.2 ms. We further demonstrate that our repetitive QND readout protocol can realize heralded high-fidelity (>99.6%) ground-state preparation. Our QND-based measurement and preparation, mediated by a second qubit of the same kind, will allow for a wide class of quantum information protocols with electron spins in silicon without compromising the architectural homogeneity.

6.
Nat Commun ; 9(1): 5066, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30498231

RESUMO

Single-spin qubits in semiconductor quantum dots hold promise for universal quantum computation with demonstrations of a high single-qubit gate fidelity above 99.9% and two-qubit gates in conjunction with a long coherence time. However, initialization and readout of a qubit is orders of magnitude slower than control, which is detrimental for implementing measurement-based protocols such as error-correcting codes. In contrast, a singlet-triplet qubit, encoded in a two-spin subspace, has the virtue of fast readout with high fidelity. Here, we present a hybrid system which benefits from the different advantages of these two distinct spin-qubit implementations. A quantum interface between the two codes is realized by electrically tunable inter-qubit exchange coupling. We demonstrate a controlled-phase gate that acts within 5.5 ns, much faster than the measured dephasing time of 211 ns. The presented hybrid architecture will be useful to settle remaining key problems with building scalable spin-based quantum computers.

7.
Phys Rev Lett ; 117(23): 237002, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27982627

RESUMO

We investigate the critical current I_{C} of ballistic Josephson junctions made of encapsulated graphene-boron-nitride heterostructures. We observe a crossover from the short to the long junction regimes as the length of the device increases. In long ballistic junctions, I_{C} is found to scale as ∝exp(-k_{B}T/δE). The extracted energies δE are independent of the carrier density and proportional to the level spacing of the ballistic cavity. As T→0 the critical current of a long (or short) junction saturates at a level determined by the product of δE (or Δ) and the number of the junction's transversal modes.

8.
Phys Rev Lett ; 117(23): 236802, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27982642

RESUMO

We report on the single-shot readout of three two-electron spin states-a singlet and two triplet substates-whose z components of spin angular momentum are 0 and +1, in a gate-defined GaAs single quantum dot. The three spin states are distinguished by detecting spin-dependent tunnel rates that arise from two mechanisms: spin filtering by spin-resolved edge states and spin-orbital correlation with orbital-dependent tunneling. The three states form one ground state and two excited states, and we observe the spin relaxation dynamics among the three spin states.

9.
Phys Rev Lett ; 117(20): 206802, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27886503

RESUMO

We detect in real time interdot tunneling events in a weakly coupled two-electron double quantum dot in GaAs. At finite magnetic fields, we observe two characteristic tunneling times T_{d} and T_{b}, belonging to, respectively, a direct and a blocked (spin-flip-assisted) tunneling. The latter corresponds to the lifting of a Pauli spin blockade, and the tunneling times ratio η=T_{b}/T_{d} characterizes the blockade efficiency. We find pronounced changes in the behavior of η upon increasing the magnetic field, with η increasing, saturating, and increasing again. We explain this behavior as due to the crossover of the dominant blockade-lifting mechanism from the hyperfine to spin-orbit interactions and due to a change in the contribution of the charge decoherence.

10.
Science ; 352(6288): 966-9, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27199424

RESUMO

A promising route for creating topological states and excitations is to combine superconductivity and the quantum Hall (QH) effect. Despite this potential, signatures of superconductivity in the QH regime remain scarce, and a superconducting current through a QH weak link has been challenging to observe. We demonstrate the existence of a distinct supercurrent mechanism in encapsulated graphene samples contacted by superconducting electrodes, in magnetic fields as high as 2 tesla. The observation of a supercurrent in the QH regime marks an important step in the quest for exotic topological excitations, such as Majorana fermions and parafermions, which may find applications in fault-tolerant quantum computing.

11.
Nat Nanotechnol ; 11(8): 672-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27240417

RESUMO

Transporting ensembles of electrons over long distances without losing their spin polarization is an important benchmark for spintronic devices. It usually requires injecting and probing spin-polarized electrons in conduction channels using ferromagnetic contacts or optical excitation. In parallel with this development, important efforts have been dedicated to achieving control of nanocircuits at the single-electron level. The detection and coherent manipulation of the spin of a single electron trapped in a quantum dot are now well established. Combined with the recently demonstrated control of the displacement of individual electrons between two distant quantum dots, these achievements allow the possibility of realizing spintronic protocols at the single-electron level. Here, we demonstrate that spin information carried by one or two electrons can be transferred between two quantum dots separated by a distance of 4 µm with a classical fidelity of 65%. We show that at present it is limited by spin flips occurring during the transfer procedure before and after electron displacement. Being able to encode and control information in the spin degree of freedom of a single electron while it is being transferred over distances of a few micrometres on nanosecond timescales will pave the way towards 'quantum spintronics' devices, which could be used to implement large-scale spin-based quantum information processing.

12.
Sci Rep ; 6: 23051, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26971450

RESUMO

Generation and manipulation of quantum entangled electrons is an important concept in quantum mechanics, and necessary for advances in quantum information processing; but not yet established in solid state systems. A promising device is a superconductor-two quantum dots Cooper pair splitter. Early nanowire based devices, while efficient, are limited in scalability and further electron manipulation. We demonstrate an optimized, high efficiency, CVD grown graphene-based Cooper pair splitter. Our device is designed to induce superconductivity in graphene via the proximity effect, resulting in both a large superconducting gap Δ = 0.5 meV, and coherence length ξ = 200 nm. The flat nature of the device lowers parasitic capacitance, increasing charging energy EC. Our design also eases geometric restrictions and minimizes output channel separation. As a result we measure a visibility of up to 86% and a splitting efficiency of up to 62%. This will pave the way towards near unity efficiencies, long distance splitting, and post-splitting electron manipulation.

13.
Phys Rev Lett ; 116(4): 046802, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26871350

RESUMO

We extract the phase coherence of a qubit defined by singlet and triplet electronic states in a gated GaAs triple quantum dot, measuring on time scales much shorter than the decorrelation time of the environmental noise. In this nonergodic regime, we observe that the coherence is boosted and several dephasing times emerge, depending on how the phase stability is extracted. We elucidate their mutual relations, and demonstrate that they reflect the noise short-time dynamics.

14.
Nat Commun ; 7: 10303, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26792013

RESUMO

The Josephson effect describes the generic appearance of a supercurrent in a weak link between two superconductors. Its exact physical nature deeply influences the properties of the supercurrent. In recent years, considerable efforts have focused on the coupling of superconductors to the surface states of a three-dimensional topological insulator. In such a material, an unconventional induced p-wave superconductivity should occur, with a doublet of topologically protected gapless Andreev bound states, whose energies vary 4π-periodically with the superconducting phase difference across the junction. In this article, we report the observation of an anomalous response to rf irradiation in a Josephson junction made of a HgTe weak link. The response is understood as due to a 4π-periodic contribution to the supercurrent, and its amplitude is compatible with the expected contribution of a gapless Andreev doublet. Our work opens the way to more elaborate experiments to investigate the induced superconductivity in a three-dimensional insulator.

16.
Phys Rev Lett ; 115(18): 186803, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26565487

RESUMO

Nuclear spins in a spin-blocked quantum dot can be pumped and eventually polarized in either of two opposite directions that are selected by applying two different source-drain voltages. Applying a square pulse train as the source-drain voltage can continuously switch the pumping direction alternately. We propose and demonstrate a critical behavior in the polarization after alternate pumping, where the final polarization is sensitive to the initial polarization and pulse conditions. This sensitivity leads to stochastic behavior in the final polarization under nominally the same pumping conditions.

17.
Nat Commun ; 6: 7446, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26130172

RESUMO

Devices to generate on-demand non-local spin entangled electron pairs have potential application as solid-state analogues of the entangled photon sources used in quantum optics. Recently, Andreev entanglers that use two quantum dots as filters to adiabatically split and separate the quasi-particles of Cooper pairs have shown efficient splitting through measurements of the transport charge but the spin entanglement has not been directly confirmed. Here we report measurements on parallel quantum dot Josephson junction devices allowing a Josephson current to flow due to the adiabatic splitting and recombination of the Cooper pair between the dots. The evidence for this non-local transport is confirmed through study of the non-dissipative supercurrent while tuning independently the dots with local electrical gates. As the Josephson current arises only from processes that maintain the coherence, we can confirm that a current flows from the spatially separated entangled pair.

18.
Phys Rev Lett ; 113(12): 126601, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25279636

RESUMO

We report on the direct observation of the transmission phase shift through a Kondo correlated quantum dot by employing a new type of two-path interferometer. We observed a clear π/2-phase shift, which persists up to the Kondo temperature TK. Above this temperature, the phase shifts by more than π/2 at each Coulomb peak, approaching the behavior observed for the standard Coulomb blockade regime. These observations are in remarkable agreement with two-level numerical renormalization group calculations. The unique combination of experimental and theoretical results presented here fully elucidates the phase evolution in the Kondo regime.

19.
Phys Rev Lett ; 113(26): 267601, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25615383

RESUMO

We demonstrate fast universal electrical spin manipulation with inhomogeneous magnetic fields. With fast Rabi frequency up to 127 MHz, we leave the conventional regime of strong nuclear-spin influence and observe a spin-flip fidelity >96%, a distinct chevron Rabi pattern in the spectral-time domain, and a spin resonance linewidth limited by the Rabi frequency, not by the dephasing rate. In addition, we establish fast z rotations up to 54 MHz by directly controlling the spin phase. Our findings will significantly facilitate tomography and error correction with electron spins in quantum dots.

20.
Phys Rev Lett ; 110(26): 266803, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23848908

RESUMO

We demonstrate one and two photoelectron trapping and the subsequent dynamics associated with interdot transfer in double quantum dots over a time scale much shorter than the typical spin lifetime. Identification of photoelectron trapping is achieved via resonant interdot tunneling of the photoelectrons in the excited states. The interdot transfer enables detection of single photoelectrons in a nondestructive manner. When two photoelectrons are trapped at almost the same time we observed that the interdot resonant tunneling is strongly affected by the Coulomb interaction between the electrons. Finally the influence of the two-electron singlet-triplet state hybridization has been detected using the interdot tunneling of a photoelectron.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...