Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 54(13): 6486-97, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26090963

RESUMO

Electron paramagnetic resonance (EPR) experiments were done on a series of S = (3)/2 ferrous nitrosyl model complexes prepared with chelating ligands that mimic the 2-His-1-carboxylate facial triad iron binding motif of the mononuclear nonheme iron oxidases. These complexes formed a comparative family, {FeNO}(7)(N2Ox)(H2O)3-x with x = 1-3, where the labile coordination sites for the binding of NO and solvent water were fac for x = 1 and cis for x = 2. The continuous-wave EPR spectra of these three complexes were typical of high-spin S = (3)/2 transition-metal ions with resonances near g = 4 and 2. Orientation-selective hyperfine sublevel correlation (HYSCORE) spectra revealed cross peaks arising from the protons of coordinated water in a clean spectral window from g = 3.0 to 2.3. These cross peaks were absent for the {FeNO}(7)(N2O3) complex. HYSCORE spectra were analyzed using a straightforward model for defining the spin Hamiltonian parameters of bound water and showed that, for the {FeNO}(7)(N2O2)(H2O) complex, a single water conformer with an isotropic hyperfine coupling, Aiso = 0.0 ± 0.3 MHz, and a dipolar coupling of T = 4.8 ± 0.2 MHz could account for the data. For the {FeNO}(7)(N2O)(H2O)2 complex, the HYSCORE cross peaks assigned to coordinated water showed more frequency dispersion and were analyzed with discrete orientations and hyperfine couplings for the two water molecules that accounted for the observed orientation-selective contour shapes. The use of three-pulse electron spin echo envelope modulation (ESEEM) data to quantify the number of water ligands coordinated to the {FeNO}(7) centers was explored. For this aspect of the study, HYSCORE spectra were important for defining a spectral window where empirical integration of ESEEM spectra would be the most accurate.


Assuntos
Complexos de Coordenação/química , Ferro/química , Modelos Moleculares , Óxidos de Nitrogênio/química , Água/química , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes
2.
Dalton Trans ; 41(18): 5662-77, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22434362

RESUMO

Enzymes in the oxygen-activating class of mononuclear non-heme iron oxygenases (MNOs) contain a highly conserved iron center facially ligated by two histidine nitrogen atoms and one carboxylate oxygen atom that leave one face of the metal center (three binding sites) open for coordination to cofactor, substrate, and/or dioxygen. A comparative family of [Fe(II/III)(N(2)O(n))(L)(4-n))](±x), n = 1-3, L = solvent or Cl(-), model complexes, based on a ligand series that supports a facially ligated N,N,O core that is then modified to contain either one or two additional carboxylate chelate arms, has been structurally and spectroscopically characterized. EPR studies demonstrate that the high-spin d(5) Fe(III)g = 4.3 signal becomes more symmetrical as the number of carboxylate ligands decreases across the series Fe(N(2)O(3)), Fe(N(2)O(2)), and Fe(N(2)O(1)), reflecting an increase in the E/D strain of these complexes as the number of exchangeable/solvent coordination sites increases, paralleling the enhanced distribution of electronic structures that contribute to the spectral line shape. The observed systematic variations in the Fe(II)-Fe(III) oxidation-reduction potentials illustrate the fundamental influence of differential carboxylate ligation. The trend towards lower reduction potential for the iron center across the [Fe(III)(N(2)O(1))Cl(3)](-), [Fe(III)(N(2)O(2))Cl(2)](-) and [Fe(III)(N(2)O(3))Cl](-) series is consistent with replacement of the chloride anions with the more strongly donating anionic O-donor carboxylate ligands that are expected to stabilize the oxidized ferric state. This electrochemical trend parallels the observed dioxygen sensitivity of the three ferrous complexes (Fe(II)(N(2)O(1)) < Fe(II)(N(2)O(2)) < Fe(II)(N(2)O(3))), which form µ-oxo bridged ferric species upon exposure to air or oxygen atom donor (OAD) molecules. The observed oxygen sensitivity is particularly interesting and discussed in the context of α-ketoglutarate-dependent MNO enzyme mechanisms.


Assuntos
Compostos Férricos/química , Compostos Ferrosos/química , Oxigenases de Função Mista/química , Óxidos de Nitrogênio/química , Ácidos Carboxílicos/química , Cristalografia por Raios X , Eletroquímica , Ferro/química , Ligantes , Oxigênio/química , Fenilalanina Hidroxilase/química , Espectrofotometria Infravermelho
3.
Arch Biochem Biophys ; 485(2): 150-9, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19254684

RESUMO

The oxygen-sensing FixL protein from Sinorhizobium meliloti is part of the heme-PAS family of gas sensors that regulate many important signal transduction pathways in a wide variety of organisms. We examined the role of the conserved F(alpha)-9 arginine 200 and several other conserved residues on the proximal F(alpha)-helix in the heme domain of SmFixL* using site-directed mutagenesis in conjunction with UV-visible, EPR, and resonance Raman spectroscopy. The F(alpha)-helix variants R200A, E, Q, H, Y197A, and D195A were expressed at reasonable levels and purified to homogeneity. The R200I and Y201A variants did not express in observable quantities. Tyrosine 201 is crucial for forming the native protein fold of SmFixL* while Y197 and R200 are important for stabilizing the kinase-inhibited oxy state. Our results show a clear correlation between H-bond donor ability of the F(alpha)-9 side chain and the rate of heme autoxidation. This trend in conjunction with crystal structures of liganded BjFixL heme domains, show that H-bonding between the conserved F(alpha)-9 arginine and the heme-6-propionate group contributes to the kinetic stability of the kinase-inactivated, oxy state of SmFixL*.


Assuntos
Proteínas de Bactérias/metabolismo , Sequência Conservada , Hemeproteínas/metabolismo , Oxigênio/metabolismo , Fosfotransferases/antagonistas & inibidores , Sinorhizobium meliloti/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Hemeproteínas/química , Hemeproteínas/genética , Histidina Quinase , Modelos Moleculares , Mutagênese Sítio-Dirigida , Dobramento de Proteína , Análise Espectral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...