Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 83(22): 4174-4189.e7, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37949067

RESUMO

Alphaviruses are a large group of re-emerging arthropod-borne RNA viruses. The compact viral RNA genomes harbor diverse structures that facilitate replication. These structures can be recognized by antiviral cellular RNA-binding proteins, including DExD-box (DDX) helicases, that bind viral RNAs to control infection. The full spectrum of antiviral DDXs and the structures that are recognized remain unclear. Genetic screening identified DDX39A as antiviral against the alphavirus chikungunya virus (CHIKV) and other medically relevant alphaviruses. Upon infection, the predominantly nuclear DDX39A accumulates in the cytoplasm inhibiting alphavirus replication, independent of the canonical interferon pathway. Biochemically, DDX39A binds to CHIKV genomic RNA, interacting with the 5' conserved sequence element (5'CSE), which is essential for the antiviral activity of DDX39A. Altogether, DDX39A relocalization and binding to a conserved structural element in the alphavirus genomic RNA attenuates infection, revealing a previously unknown layer to the cellular control of infection.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Vírus Chikungunya/genética , Linhagem Celular , Febre de Chikungunya/metabolismo , RNA Helicases/metabolismo , Replicação Viral/genética , RNA Viral/genética , RNA Viral/metabolismo , Antivirais/farmacologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
2.
mBio ; 11(5)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33109765

RESUMO

DEAD box RNA helicases regulate diverse facets of RNA biology. Proteins of this family carry out essential cellular functions, and emerging literature is revealing additional roles in immune defense. Using RNA interference screening, we identified an evolutionarily conserved antiviral role for the helicase DDX56 against the alphavirus Sindbis virus (SINV), a mosquito-transmitted pathogen that infects humans. Depletion of DDX56 enhanced infection in Drosophila and human cells. Furthermore, we found that DDX56 also controls the emerging alphavirus chikungunya virus (CHIKV) through an interferon-independent mechanism. Using cross-linking immunoprecipitation (CLIP-Seq), we identified a predicted stem-loop on the viral genomic RNA bound by DDX56. Mechanistically, we found that DDX56 levels increase in the cytoplasm during CHIKV infection. In the cytoplasm, DDX56 impacts the earliest step in the viral replication cycle by binding and destabilizing the incoming viral genomic RNA, thereby attenuating infection. Thus, DDX56 is a conserved antiviral RNA binding protein that controls alphavirus infection.IMPORTANCE Arthropod-borne viruses are diverse pathogens and include the emerging virus chikungunya virus, which is associated with human disease. Through genetic screening, we found that the conserved RNA binding protein DDX56 is antiviral against chikungunya virus in insects and humans. DDX56 relocalizes from the nucleus to the cytoplasm, where it binds to a stem-loop in the viral genome and destabilizes incoming genomes. Thus, DDX56 is an evolutionarily conserved antiviral factor that controls alphavirus infection.


Assuntos
RNA Helicases DEAD-box/metabolismo , Interações Hospedeiro-Patógeno , RNA Viral/metabolismo , Replicação Viral/genética , Linhagem Celular Tumoral , Febre de Chikungunya , Vírus Chikungunya , Genômica , Células HeLa , Humanos , Osteossarcoma , Ligação Proteica , Interferência de RNA , Replicação Viral/fisiologia
3.
Viruses ; 12(2)2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033386

RESUMO

DEAD-box helicases are a large family of conserved RNA-binding proteins that belong to the broader group of cellular DExD/H helicases. Members of the DEAD-box helicase family have roles throughout cellular RNA metabolism from biogenesis to decay. Moreover, there is emerging evidence that cellular RNA helicases, including DEAD-box helicases, play roles in the recognition of foreign nucleic acids and the modulation of viral infection. As intracellular parasites, viruses must evade detection by innate immune sensing mechanisms and degradation by cellular machinery while also manipulating host cell processes to facilitate replication. The ability of DEAD-box helicases to recognize RNA in a sequence-independent manner, as well as the breadth of cellular functions carried out by members of this family, lead them to influence innate recognition and viral infections in multiple ways. Indeed, DEAD-box helicases have been shown to contribute to intracellular immune sensing, act as antiviral effectors, and even to be coopted by viruses to promote their replication. However, our understanding of the mechanisms underlying these interactions, as well as the cellular roles of DEAD-box helicases themselves, is limited in many cases. We will discuss the diverse roles that members of the DEAD-box helicase family play during viral infections.


Assuntos
RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Viroses/enzimologia , RNA Helicases DEAD-box/imunologia , Humanos , Imunidade Inata , RNA Viral/genética , Replicação Viral
4.
Cell Rep ; 25(13): 3759-3773.e9, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30590047

RESUMO

Long-lived reservoirs of persistent HIV are a major barrier to a cure. CD4+ hematopoietic stem and progenitor cells (HSPCs) have the capacity for lifelong survival, self-renewal, and the generation of daughter cells. Recent evidence shows that they are also susceptible to HIV infection in vitro and in vivo. Whether HSPCs harbor infectious virus or contribute to plasma virus (PV) is unknown. Here, we provide strong evidence that clusters of identical proviruses from HSPCs and their likely progeny often match residual PV. A higher proportion of these sequences match residual PV than proviral genomes from bone marrow and peripheral blood mononuclear cells that are observed only once. Furthermore, an analysis of near-full-length genomes isolated from HSPCs provides evidence that HSPCs harbor functional HIV proviral genomes that often match residual PV. These results support the conclusion that HIV-infected HSPCs form a distinct and functionally significant reservoir of persistent HIV in infected people.


Assuntos
Reservatórios de Doenças/virologia , Infecções por HIV/virologia , HIV-1/fisiologia , Células-Tronco Hematopoéticas/virologia , Viremia/virologia , Adulto , Idoso , Sequência de Bases , DNA Viral/genética , Genoma Viral , Células HEK293 , Infecções por HIV/sangue , HIV-1/genética , Humanos , Pessoa de Meia-Idade , Fases de Leitura Aberta/genética , Provírus/genética , Viremia/sangue , Vírion/fisiologia , Adulto Jovem
5.
PLoS Pathog ; 13(7): e1006509, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28732051

RESUMO

Latent HIV infection of long-lived cells is a barrier to viral clearance. Hematopoietic stem and progenitor cells are a heterogeneous population of cells, some of which are long-lived. CXCR4-tropic HIVs infect a broad range of HSPC subtypes, including hematopoietic stem cells, which are multi-potent and long-lived. However, CCR5-tropic HIV infection is limited to more differentiated progenitor cells with life spans that are less well understood. Consistent with emerging data that restricted progenitor cells can be long-lived, we detected persistent HIV in restricted HSPC populations from optimally treated people. Further, genotypic and phenotypic analysis of amplified env alleles from donor samples indicated that both CXCR4- and CCR5-tropic viruses persisted in HSPCs. RNA profiling confirmed expression of HIV receptor RNA in a pattern that was consistent with in vitro and in vivo results. In addition, we characterized a CD4high HSPC sub-population that was preferentially targeted by a variety of CXCR4- and CCR5-tropic HIVs in vitro. Finally, we present strong evidence that HIV proviral genomes of both tropisms can be transmitted to CD4-negative daughter cells of multiple lineages in vivo. In some cases, the transmitted proviral genomes contained signature deletions that inactivated the virus, eliminating the possibility that coincidental infection explains the results. These data support a model in which both stem and non-stem cell progenitors serve as persistent reservoirs for CXCR4- and CCR5-tropic HIV proviral genomes that can be passed to daughter cells.


Assuntos
Antígenos CD4/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Células-Tronco Hematopoéticas/virologia , Provírus/fisiologia , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Receptores de HIV/metabolismo , Adulto , Antígenos CD4/genética , Células Cultivadas , Feminino , Genoma Viral , Infecções por HIV/genética , HIV-1/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Provírus/genética , Receptores CCR5/genética , Receptores CXCR4/genética , Receptores de HIV/genética , Adulto Jovem
6.
Proc Natl Acad Sci U S A ; 112(22): E2920-9, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26038567

RESUMO

The mosquito-transmitted bunyavirus, Rift Valley fever virus (RVFV), is a highly successful pathogen for which there are no vaccines or therapeutics. Translational arrest is a common antiviral strategy used by hosts. In response, RVFV inhibits two well-known antiviral pathways that attenuate translation during infection, PKR and type I IFN signaling. Despite this, translational arrest occurs during RVFV infection by unknown mechanisms. Here, we find that RVFV infection triggers the decay of core translation machinery mRNAs that possess a 5'-terminal oligopyrimidine (5'-TOP) motif in their 5'-UTR, including mRNAs encoding ribosomal proteins, which leads to a decrease in overall ribosomal protein levels. We find that the RNA decapping enzyme NUDT16 selectively degrades 5'-TOP mRNAs during RVFV infection and this decay is triggered in response to mTOR attenuation via the translational repressor 4EBP1/2 axis. Translational arrest of 5'-TOPs via 4EBP1/2 restricts RVFV replication, and this increased RNA decay results in the loss of visible RNA granules, including P bodies and stress granules. Because RVFV cap-snatches in RNA granules, the increased level of 5'-TOP mRNAs in this compartment leads to snatching of these targets, which are translationally suppressed during infection. Therefore, translation of RVFV mRNAs is compromised by multiple mechanisms during infection. Together, these data present a previously unknown mechanism for translational shutdown in response to viral infection and identify mTOR attenuation as a potential therapeutic avenue against bunyaviral infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fosfoproteínas/metabolismo , Biossíntese de Proteínas/fisiologia , Pirofosfatases/metabolismo , Sequência de Oligopirimidina na Região 5' Terminal do RNA/fisiologia , Febre do Vale de Rift/metabolismo , Vírus da Febre do Vale do Rift/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Imunofluorescência , Humanos , Immunoblotting , Modelos Lineares , Luciferases , Sequência de Oligopirimidina na Região 5' Terminal do RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Proc Natl Acad Sci U S A ; 112(21): 6688-93, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25964352

RESUMO

Inflammasomes are critical for host defense against bacterial pathogens. In murine macrophages infected by gram-negative bacteria, the canonical inflammasome activates caspase-1 to mediate pyroptotic cell death and release of IL-1 family cytokines. Additionally, a noncanonical inflammasome controlled by caspase-11 induces cell death and IL-1 release. However, humans do not encode caspase-11. Instead, humans encode two putative orthologs: caspase-4 and caspase-5. Whether either ortholog functions similar to caspase-11 is poorly defined. Therefore, we sought to define the inflammatory caspases in primary human macrophages that regulate inflammasome responses to gram-negative bacteria. We find that human macrophages activate inflammasomes specifically in response to diverse gram-negative bacterial pathogens that introduce bacterial products into the host cytosol using specialized secretion systems. In primary human macrophages, IL-1ß secretion requires the caspase-1 inflammasome, whereas IL-1α release and cell death are caspase-1-independent. Instead, caspase-4 mediates IL-1α release and cell death. Our findings implicate human caspase-4 as a critical regulator of noncanonical inflammasome activation that initiates defense against bacterial pathogens in primary human macrophages.


Assuntos
Caspases Iniciadoras/imunologia , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Negativas/patogenicidade , Inflamassomos/imunologia , Animais , Caspase 1/imunologia , Morte Celular , Células Cultivadas , Humanos , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Legionella pneumophila/imunologia , Legionella pneumophila/patogenicidade , Lipopolissacarídeos/toxicidade , Macrófagos/enzimologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Yersinia pseudotuberculosis/imunologia , Yersinia pseudotuberculosis/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...