Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Inj Prev ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844338

RESUMO

OBJECTIVE: The USA has higher rates of fatal motor vehicle collisions than most high-income countries. Previous studies examining the role of the built environment were generally limited to small geographic areas or single cities. This study aims to quantify associations between built environment characteristics and traffic collisions in the USA. METHODS: Built environment characteristics were derived from Google Street View images and summarised at the census tract level. Fatal traffic collisions were obtained from the 2019-2021 Fatality Analysis Reporting System. Fatal and non-fatal traffic collisions in Washington DC were obtained from the District Department of Transportation. Adjusted Poisson regression models examined whether built environment characteristics are related to motor vehicle collisions in the USA, controlling for census tract sociodemographic characteristics. RESULTS: Census tracts in the highest tertile of sidewalks, single-lane roads, streetlights and street greenness had 70%, 50%, 30% and 26% fewer fatal vehicle collisions compared with those in the lowest tertile. Street greenness and single-lane roads were associated with 37% and 38% fewer pedestrian-involved and cyclist-involved fatal collisions. Analyses with fatal and non-fatal collisions in Washington DC found streetlights and stop signs were associated with fewer pedestrians and cyclists-involved vehicle collisions while road construction had an adverse association. CONCLUSION: This study demonstrates the utility of using data algorithms that can automatically analyse street segments to create indicators of the built environment to enhance understanding of large-scale patterns and inform interventions to decrease road traffic injuries and fatalities.

2.
Neurodegener Dis ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865972

RESUMO

INTRODUCTION: Manual motor problems have been reported in mild cognitive impairment (MCI) and Alzheimer's disease (AD), but the specific aspects that are affected, their neuropathology, and potential value for classification modeling is unknown. The current study examined if multiple measures of motor strength, dexterity, and speed are affected in MCI and AD, related to AD biomarkers, and are able to classify MCI or AD. METHODS: Fifty-three cognitively normal (CN), 33 amnestic MCI, and 28 AD subjects completed five manual motor measures: grip force, Trail Making Test A, spiral tracing, finger tapping, and a simulated feeding task. Analyses included: 1) group differences in manual performance; 2) associations between manual function and AD biomarkers (PET amyloid ß, hippocampal volume, and APOE ε4 alleles); and 3) group classification accuracy of manual motor function using machine learning. RESULTS: amnestic MCI and AD subjects exhibited slower psychomotor speed and AD subjects had weaker dominant hand grip strength than CN subjects. Performance on these measures was related to amyloid ß deposition (both) and hippocampal volume (psychomotor speed only). Support vector classification well-discriminated control and AD subjects (area under the curve of 0.73 and 0.77 respectively), but poorly discriminated MCI from controls or AD. CONCLUSION: Grip strength and spiral tracing appear preserved, while psychomotor speed is affected in amnestic MCI and AD. The association of motor performance with amyloid ß deposition and atrophy could indicate that this is due to amyloid deposition in- and atrophy of motor brain regions, which generally occurs later in the disease process. The promising discriminatory abilities of manual motor measures for AD emphasize their value alongside other cognitive and motor assessment outcomes in classification and prediction models, as well as potential enrichment of outcome variables in AD clinical trials.

3.
SSM Popul Health ; 26: 101670, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38708409

RESUMO

Background: This study utilizes innovative computer vision methods alongside Google Street View images to characterize neighborhood built environments across Utah. Methods: Convolutional Neural Networks were used to create indicators of street greenness, crosswalks, and building type on 1.4 million Google Street View images. The demographic and medical profiles of Utah residents came from the Utah Population Database (UPDB). We implemented hierarchical linear models with individuals nested within zip codes to estimate associations between neighborhood built environment features and individual-level obesity and diabetes, controlling for individual- and zip code-level characteristics (n = 1,899,175 adults living in Utah in 2015). Sibling random effects models were implemented to account for shared family attributes among siblings (n = 972,150) and twins (n = 14,122). Results: Consistent with prior neighborhood research, the variance partition coefficients (VPC) of our unadjusted models nesting individuals within zip codes were relatively small (0.5%-5.3%), except for HbA1c (VPC = 23%), suggesting a small percentage of the outcome variance is at the zip code-level. However, proportional change in variance (PCV) attributable to zip codes after the inclusion of neighborhood built environment variables and covariates ranged between 11% and 67%, suggesting that these characteristics account for a substantial portion of the zip code-level effects. Non-single-family homes (indicator of mixed land use), sidewalks (indicator of walkability), and green streets (indicator of neighborhood aesthetics) were associated with reduced diabetes and obesity. Zip codes in the third tertile for non-single-family homes were associated with a 15% reduction (PR: 0.85; 95% CI: 0.79, 0.91) in obesity and a 20% reduction (PR: 0.80; 95% CI: 0.70, 0.91) in diabetes. This tertile was also associated with a BMI reduction of -0.68 kg/m2 (95% CI: -0.95, -0.40). Conclusion: We observe associations between neighborhood characteristics and chronic diseases, accounting for biological, social, and cultural factors shared among siblings in this large population-based study.

4.
J Urban Health ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589673

RESUMO

Nine in 10 road traffic deaths occur in low- and middle-income countries (LMICs). Despite this disproportionate burden, few studies have examined built environment correlates of road traffic injury in these settings, including in Latin America. We examined road traffic collisions in Bogotá, Colombia, occurring between 2015 and 2019, and assessed the association between neighborhood-level built environment features and pedestrian injury and death. We used descriptive statistics to characterize all police-reported road traffic collisions that occurred in Bogotá between 2015 and 2019. Cluster detection was used to identify spatial clustering of pedestrian collisions. Adjusted multivariate Poisson regression models were fit to examine associations between several neighborhood-built environment features and rate of pedestrian road traffic injury and death. A total of 173,443 police-reported traffic collisions occurred in Bogotá between 2015 and 2019. Pedestrians made up about 25% of road traffic injuries and 50% of road traffic deaths in Bogotá between 2015 and 2019. Pedestrian collisions were spatially clustered in the southwestern region of Bogotá. Neighborhoods with more street trees (RR, 0.90; 95% CI, 0.82-0.98), traffic signals (0.89, 0.81-0.99), and bus stops (0.89, 0.82-0.97) were associated with lower pedestrian road traffic deaths. Neighborhoods with greater density of large roads were associated with higher pedestrian injury. Our findings highlight the potential for pedestrian-friendly infrastructure to promote safer interactions between pedestrians and motorists in Bogotá and in similar urban contexts globally.

5.
Mod Pathol ; 37(4): 100447, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369187

RESUMO

Pathologists have, over several decades, developed criteria for diagnosing and grading prostate cancer. However, this knowledge has not, so far, been included in the design of convolutional neural networks (CNN) for prostate cancer detection and grading. Further, it is not known whether the features learned by machine-learning algorithms coincide with diagnostic features used by pathologists. We propose a framework that enforces algorithms to learn the cellular and subcellular differences between benign and cancerous prostate glands in digital slides from hematoxylin and eosin-stained tissue sections. After accurate gland segmentation and exclusion of the stroma, the central component of the pipeline, named HistoEM, utilizes a histogram embedding of features from the latent space of the CNN encoder. Each gland is represented by 128 feature-wise histograms that provide the input into a second network for benign vs cancer classification of the whole gland. Cancer glands are further processed by a U-Net structured network to separate low-grade from high-grade cancer. Our model demonstrates similar performance compared with other state-of-the-art prostate cancer grading models with gland-level resolution. To understand the features learned by HistoEM, we first rank features based on the distance between benign and cancer histograms and visualize the tissue origins of the 2 most important features. A heatmap of pixel activation by each feature is generated using Grad-CAM and overlaid on nuclear segmentation outlines. We conclude that HistoEM, similar to pathologists, uses nuclear features for the detection of prostate cancer. Altogether, this novel approach can be broadly deployed to visualize computer-learned features in histopathology images.


Assuntos
Patologistas , Neoplasias da Próstata , Masculino , Humanos , Fluxo de Trabalho , Redes Neurais de Computação , Algoritmos , Neoplasias da Próstata/patologia
6.
J Alzheimers Dis ; 95(3): 1233-1252, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37694362

RESUMO

BACKGROUND: Despite reports of gross motor problems in mild cognitive impairment (MCI) and Alzheimer's disease (AD), fine motor function has been relatively understudied. OBJECTIVE: We examined if finger tapping is affected in AD, related to AD biomarkers, and able to classify MCI or AD. METHODS: Forty-seven cognitively normal, 27 amnestic MCI, and 26 AD subjects completed unimanual and bimanual computerized tapping tests. We tested 1) group differences in tapping with permutation models; 2) associations between tapping and biomarkers (PET amyloid-ß, hippocampal volume, and APOEɛ4 alleles) with linear regression; and 3) the predictive value of tapping for group classification using machine learning. RESULTS: AD subjects had slower reaction time and larger speed variability than controls during all tapping conditions, except for dual tapping. MCI subjects performed worse than controls on reaction time and speed variability for dual and non-dominant hand tapping. Tapping speed and variability were related to hippocampal volume, but not to amyloid-ß deposition or APOEɛ4 alleles. Random forest classification (overall accuracy = 70%) discriminated control and AD subjects, but poorly discriminated MCI from controls or AD. CONCLUSIONS: MCI and AD are linked to more variable finger tapping with slower reaction time. Associations between finger tapping and hippocampal volume, but not amyloidosis, suggest that tapping deficits are related to neuropathology that presents later during the disease. Considering that tapping performance is able to differentiate between control and AD subjects, it can offer a cost-efficient tool for augmenting existing AD biomarkers.


Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Humanos , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides , Disfunção Cognitiva/psicologia , Biomarcadores
7.
medRxiv ; 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37649910

RESUMO

Artificial intelligence - machine learning (AI-ML) is a computational technique that has been demonstrated to be able to extract meaningful clinical information from diagnostic data that are not available using either human interpretation or more simple analysis methods. Recent developments have shown that AI-ML approaches applied to ECGs can accurately predict different patient characteristics and pathologies not detectable by expert physician readers. There is an extensive body of literature surrounding the use of AI-ML in other fields, which has given rise to an array of predefined open-source AI-ML architectures which can be translated to new problems in an "off-the-shelf" manner. Applying "off-the-shelf" AI-ML architectures to ECG-based datasets opens the door for rapid development and identification of previously unknown disease biomarkers. Despite the excellent opportunity, the ideal open-source AI-ML architecture for ECG related problems is not known. Furthermore, there has been limited investigation on how and when these AI-ML approaches fail and possible bias or disparities associated with particular network architectures. In this study, we aimed to: (1) determine if open-source, "off-the-shelf" AI-ML architectures could be trained to classify low LVEF from ECGs, (2) assess the accuracy of different AI-ML architectures compared to each other, and (3) to identify which, if any, patient characteristics are associated with poor AI-ML performance.

8.
Front Radiol ; 3: 1088068, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492389

RESUMO

Convolutional neural networks (CNNs) have been successfully applied to chest x-ray (CXR) images. Moreover, annotated bounding boxes have been shown to improve the interpretability of a CNN in terms of localizing abnormalities. However, only a few relatively small CXR datasets containing bounding boxes are available, and collecting them is very costly. Opportunely, eye-tracking (ET) data can be collected during the clinical workflow of a radiologist. We use ET data recorded from radiologists while dictating CXR reports to train CNNs. We extract snippets from the ET data by associating them with the dictation of keywords and use them to supervise the localization of specific abnormalities. We show that this method can improve a model's interpretability without impacting its image-level classification.

9.
Pattern Recognit ; 1392023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37089791

RESUMO

Adversarial training, especially projected gradient descent (PGD), has proven to be a successful approach for improving robustness against adversarial attacks. After adversarial training, gradients of models with respect to their inputs have a preferential direction. However, the direction of alignment is not mathematically well established, making it difficult to evaluate quantitatively. We propose a novel definition of this direction as the direction of the vector pointing toward the closest point of the support of the closest inaccurate class in decision space. To evaluate the alignment with this direction after adversarial training, we apply a metric that uses generative adversarial networks to produce the smallest residual needed to change the class present in the image. We show that PGD-trained models have a higher alignment than the baseline according to our definition, that our metric presents higher alignment values than a competing metric formulation, and that enforcing this alignment increases the robustness of models.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38405161

RESUMO

"Drivers" are theorized mechanisms for persistent atrial fibrillation. Machine learning algorithms have been used to identify drivers, but the small size of current driver datasets limits their performance. We hypothesized that pretraining with unsupervised learning on a large dataset of unlabeled electrograms would improve classifier accuracy on a smaller driver dataset. In this study, we used a SimCLR-based framework to pretrain a residual neural network on a dataset of 113K unlabeled 64-electrode measurements and found weighted testing accuracy to improve over a non-pretrained network (78.6±3.9% vs 71.9±3.3%). This lays ground for development of superior driver detection algorithms and supports use of transfer learning for other datasets of endocardial electrograms.

11.
IEEE Access ; 11: 73330-73339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38405414

RESUMO

This paper aims to address the challenges associated with evaluating the impact of neighborhood environments on health outcomes. Google street view (GSV) images provide a valuable tool for assessing neighborhood environments on a large scale. By annotating the GSV images with labels indicating the presence or absence of specific neighborhood features, we can develop classifiers capable of automatically analyzing and evaluating the environment. However, the process of labeling GSV images to analyze and evaluate the environment is a time-consuming and labor-intensive task. To overcome these challenges, we propose using a multi-task classifier to enhance the training of classifiers with limited supervised GSV data. Our multi-task classifier utilizes readily available, inexpensive online images collected from Flickr as a related classification task. The hypothesis is that a classifier trained on multiple related tasks is less likely to overfit to small amounts of training data and generalizes better to unseen data. We leverage the power of multiple related tasks to improve the classifier's overall performance and generalization capability. Here we show that, with the proposed learning paradigm, predicted labels for GSV test images are more accurate. Across different environment indicators, the accuracy, F1 score and balanced accuracy increase up to 6 % in the multi-task learning framework compared to its single-task learning counterpart. The enhanced accuracy of the predicted labels obtained through the multi-task classifier contributes to a more reliable and precise regression analysis determining the correlation between predicted built environment indicators and health outcomes. The R2 values calculated for different health outcomes improve by up to 4 % using multi-task learning detected indicators.

12.
Artigo em Inglês | MEDLINE | ID: mdl-36497839

RESUMO

As climate change increases the frequency and intensity of devastating and unpredictable extreme heat events, developments to the built environment should consider instigating practices that minimize the likelihood of indoor overheating during hot weather. Heatwaves are the leading cause of death among weather-related causes worldwide, including in developed and developing countries. In this empirical study, a four-step approach was used to collect, extract and analyze data from twenty-seven states in the United States. Three housing characteristic categories (i.e., general housing conditions, living conditions, and housing thermal inertia) and eight variables were extracted from the American Housing Survey database, ResStock database and CDC's National Environmental Public Health Tracking Network. Multivariable regression models were used to understand the influential variables, a multicollinearity test was used to determine the dependence of those variables, and then a logistic model was used to verify the results. Three variables-housing age (HA), housing crowding ratio (HCR), and roof condition (RC)-were found to be correlated with the risk of heat-related illness (HRI) indexes. Then, a logistic regression model was generated using the three variables to predict the risk of heat-related emergency department visits (EDV) and heat-related mortality (MORD) on a state level. The results indicate that the proposed logistic regression model correctly predicted 100% of the high-risk states for MORD for the eight states tested. Overall, this analysis provides additional evidence about the housing character variables that influence HRI. The outcomes also reinforce the concept of the built environment determined health and demonstrate that the built environment, especially housing, should be considered in techniques for mitigating climate change-exacerbated health conditions.


Assuntos
Calor Extremo , Transtornos de Estresse por Calor , Humanos , Estados Unidos/epidemiologia , Temperatura Alta , Transtornos de Estresse por Calor/epidemiologia , Habitação , Calor Extremo/efeitos adversos , Mudança Climática
13.
Artigo em Inglês | MEDLINE | ID: mdl-36231394

RESUMO

Built environment neighborhood characteristics are difficult to measure and assess on a large scale. Consequently, there is a lack of sufficient data that can help us investigate neighborhood characteristics as structural determinants of health on a national level. The objective of this study is to utilize publicly available Google Street View images as a data source for characterizing built environments and to examine the influence of built environments on chronic diseases and health behaviors in the United States. Data were collected by processing 164 million Google Street View images from November 2019 across the United States. Convolutional Neural Networks, a class of multi-layer deep neural networks, were used to extract features of the built environment. Validation analyses found accuracies of 82% or higher across neighborhood characteristics. In regression analyses controlling for census tract sociodemographics, we find that single-lane roads (an indicator of lower urban development) were linked with chronic conditions and worse mental health. Walkability and urbanicity indicators such as crosswalks, sidewalks, and two or more cars were associated with better health, including reduction in depression, obesity, high blood pressure, and high cholesterol. Street signs and streetlights were also found to be associated with decreased chronic conditions. Chain link fence (physical disorder indicator) was generally associated with poorer mental health. Living in neighborhoods with a built environment that supports social interaction and physical activity can lead to positive health outcomes. Computer vision models using manually annotated Google Street View images as a training dataset were able to accurately identify neighborhood built environment characteristics. These methods increases the feasibility, scale, and efficiency of neighborhood studies on health.


Assuntos
Planejamento Ambiental , Ferramenta de Busca , Ambiente Construído , Colesterol , Doença Crônica , Humanos , Redes Neurais de Computação , Avaliação de Resultados em Cuidados de Saúde , Características de Residência , Estados Unidos , Caminhada
14.
Big Data Cogn Comput ; 6(1)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36046271

RESUMO

Collecting neighborhood data can both be time- and resource-intensive, especially across broad geographies. In this study, we leveraged 1.4 million publicly available Google Street View (GSV) images from Utah to construct indicators of the neighborhood built environment and evaluate their associations with 2017-2019 health outcomes of approximately one-third of the population living in Utah. The use of electronic medical records allows for the assessment of associations between neighborhood characteristics and individual-level health outcomes while controlling for predisposing factors, which distinguishes this study from previous GSV studies that were ecological in nature. Among 938,085 adult patients, we found that individuals living in communities in the highest tertiles of green streets and non-single-family homes have 10-27% lower diabetes, uncontrolled diabetes, hypertension, and obesity, but higher substance use disorders-controlling for age, White race, Hispanic ethnicity, religion, marital status, health insurance, and area deprivation index. Conversely, the presence of visible utility wires overhead was associated with 5-10% more diabetes, uncontrolled diabetes, hypertension, obesity, and substance use disorders. Our study found that non-single-family and green streets were related to a lower prevalence of chronic conditions, while visible utility wires and single-lane roads were connected with a higher burden of chronic conditions. These contextual characteristics can better help healthcare organizations understand the drivers of their patients' health by further considering patients' residential environments, which present both risks and resources.

15.
Sci Data ; 9(1): 350, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717401

RESUMO

Deep learning has shown recent success in classifying anomalies in chest x-rays, but datasets are still small compared to natural image datasets. Supervision of abnormality localization has been shown to improve trained models, partially compensating for dataset sizes. However, explicitly labeling these anomalies requires an expert and is very time-consuming. We propose a potentially scalable method for collecting implicit localization data using an eye tracker to capture gaze locations and a microphone to capture a dictation of a report, imitating the setup of a reading room. The resulting REFLACX (Reports and Eye-Tracking Data for Localization of Abnormalities in Chest X-rays) dataset was labeled across five radiologists and contains 3,032 synchronized sets of eye-tracking data and timestamped report transcriptions for 2,616 chest x-rays from the MIMIC-CXR dataset. We also provide auxiliary annotations, including bounding boxes around lungs and heart and validation labels consisting of ellipses localizing abnormalities and image-level labels. Furthermore, a small subset of the data contains readings from all radiologists, allowing for the calculation of inter-rater scores.


Assuntos
Tecnologia de Rastreamento Ocular , Radiografia Torácica , Aprendizado Profundo , Humanos , Radiografia , Raios X
16.
Artigo em Inglês | MEDLINE | ID: mdl-34639726

RESUMO

Characteristics of the neighborhood built environment influence health and health behavior. Google Street View (GSV) images may facilitate measures of the neighborhood environment that are meaningful, practical, and adaptable to any geographic boundary. We used GSV images and computer vision to characterize neighborhood environments (green streets, visible utility wires, and dilapidated buildings) and examined cross-sectional associations with chronic health outcomes among patients from the University of California, San Francisco Health system with outpatient visits from 2015 to 2017. Logistic regression models were adjusted for patient age, sex, marital status, race/ethnicity, insurance status, English as preferred language, assignment of a primary care provider, and neighborhood socioeconomic status of the census tract in which the patient resided. Among 214,163 patients residing in California, those living in communities in the highest tertile of green streets had 16-29% lower prevalence of coronary artery disease, hypertension, and diabetes compared to those living in communities in the lowest tertile. Conversely, a higher presence of visible utility wires overhead was associated with 10-26% more coronary artery disease and hypertension, and a higher presence of dilapidated buildings was associated with 12-20% greater prevalence of coronary artery disease, hypertension, and diabetes. GSV images and computer vision models can be used to understand contextual factors influencing patient health outcomes and inform structural and place-based interventions to promote population health.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus , Hipertensão , Estudos Transversais , Diabetes Mellitus/epidemiologia , Humanos , Hipertensão/epidemiologia , Características de Residência , São Francisco/epidemiologia , Ferramenta de Busca
17.
Public Health Rep ; 136(2): 201-211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33211991

RESUMO

OBJECTIVES: Built environments can affect health, but data in many geographic areas are limited. We used a big data source to create national indicators of neighborhood quality and assess their associations with health. METHODS: We leveraged computer vision and Google Street View images accessed from December 15, 2017, through July 17, 2018, to detect features of the built environment (presence of a crosswalk, non-single-family home, single-lane roads, and visible utility wires) for 2916 US counties. We used multivariate linear regression models to determine associations between features of the built environment and county-level health outcomes (prevalence of adult obesity, prevalence of diabetes, physical inactivity, frequent physical and mental distress, poor or fair self-rated health, and premature death [in years of potential life lost]). RESULTS: Compared with counties with the least number of crosswalks, counties with the most crosswalks were associated with decreases of 1.3%, 2.7%, and 1.3% of adult obesity, physical inactivity, and fair or poor self-rated health, respectively, and 477 fewer years of potential life lost before age 75 (per 100 000 population). The presence of non-single-family homes was associated with lower levels of all health outcomes except for premature death. The presence of single-lane roads was associated with an increase in physical inactivity, frequent physical distress, and fair or poor self-rated health. Visible utility wires were associated with increases in adult obesity, diabetes, physical and mental distress, and fair or poor self-rated health. CONCLUSIONS: The use of computer vision and big data image sources makes possible national studies of the built environment's effects on health, producing data and results that may inform national and local decision-making.


Assuntos
Ambiente Construído/estatística & dados numéricos , Nível de Saúde , Características de Residência/estatística & dados numéricos , Análise Espacial , Big Data , Diabetes Mellitus/epidemiologia , Planejamento Ambiental , Comportamentos Relacionados com a Saúde , Humanos , Internet , Mortalidade Prematura/tendências , Obesidade/epidemiologia , Comportamento Sedentário , Estresse Psicológico/epidemiologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-32882867

RESUMO

The spread of COVID-19 is not evenly distributed. Neighborhood environments may structure risks and resources that produce COVID-19 disparities. Neighborhood built environments that allow greater flow of people into an area or impede social distancing practices may increase residents' risk for contracting the virus. We leveraged Google Street View (GSV) images and computer vision to detect built environment features (presence of a crosswalk, non-single family home, single-lane roads, dilapidated building and visible wires). We utilized Poisson regression models to determine associations of built environment characteristics with COVID-19 cases. Indicators of mixed land use (non-single family home), walkability (sidewalks), and physical disorder (dilapidated buildings and visible wires) were connected with higher COVID-19 cases. Indicators of lower urban development (single lane roads and green streets) were connected with fewer COVID-19 cases. Percent black and percent with less than a high school education were associated with more COVID-19 cases. Our findings suggest that built environment characteristics can help characterize community-level COVID-19 risk. Sociodemographic disparities also highlight differential COVID-19 risk across groups of people. Computer vision and big data image sources make national studies of built environment effects on COVID-19 risk possible, to inform local area decision-making.


Assuntos
Ambiente Construído , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Imagens de Satélites , Betacoronavirus , COVID-19 , Planejamento Ambiental , Humanos , Características de Residência , SARS-CoV-2
19.
Med Image Anal ; 64: 101731, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32544841

RESUMO

To fully define the target objects of interest in clinical diagnosis, many deep convolution neural networks (CNNs) use multimodal paired registered images as inputs for segmentation tasks. However, these paired images are difficult to obtain in some cases. Furthermore, the CNNs trained on one specific modality may fail on others for images acquired with different imaging protocols and scanners. Therefore, developing a unified model that can segment the target objects from unpaired multiple modalities is significant for many clinical applications. In this work, we propose a 3D unified generative adversarial network, which unifies the any-to-any modality translation and multimodal segmentation in a single network. Since the anatomical structure is preserved during modality translation, the auxiliary translation task is used to extract the modality-invariant features and generate the additional training data implicitly. To fully utilize the segmentation-related features, we add a cross-task skip connection with feature recalibration from the translation decoder to the segmentation decoder. Experiments on abdominal organ segmentation and brain tumor segmentation indicate that our method outperforms the existing unified methods.


Assuntos
Neoplasias Encefálicas , Processamento de Imagem Assistida por Computador , Humanos , Imageamento Tridimensional , Redes Neurais de Computação
20.
Artigo em Inglês | MEDLINE | ID: mdl-32456114

RESUMO

Previous studies have demonstrated that there is a high possibility that the presence of certain built environment characteristics can influence health outcomes, especially those related to obesity and physical activity. We examined the associations between select neighborhood built environment indicators (crosswalks, non-single family home buildings, single-lane roads, and visible wires), and health outcomes, including obesity, diabetes, cardiovascular disease, and premature mortality, at the state level. We utilized 31,247,167 images collected from Google Street View to create indicators for neighborhood built environment characteristics using deep learning techniques. Adjusted linear regression models were used to estimate the associations between aggregated built environment indicators and state-level health outcomes. Our results indicated that the presence of a crosswalk was associated with reductions in obesity and premature mortality. Visible wires were associated with increased obesity, decreased physical activity, and increases in premature mortality, diabetes mortality, and cardiovascular mortality (however, these results were not significant). Non-single family homes were associated with decreased diabetes and premature mortality, as well as increased physical activity and park and recreational access. Single-lane roads were associated with increased obesity and decreased park access. The findings of our study demonstrated that built environment features may be associated with a variety of adverse health outcomes.


Assuntos
Ambiente Construído , Exercício Físico , Obesidade , Características de Residência , Doença Crônica , Planejamento Ambiental , Humanos , Mortalidade/tendências , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...