Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 96, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996941

RESUMO

Solid-state quantum emitters coupled with a single mode fibre are of interest for photonic and quantum applications. In this context, nanofibre Bragg cavities (NFBCs), which are microcavities fabricated in an optical nanofibre, are promising devices because they can efficiently couple photons emitted from the quantum emitters to the single mode fibre. Recently, we have realized a hybrid device of an NFBC and a single colloidal CdSe/ZnS quantum dot. However, colloidal quantum dots exhibit inherent photo-bleaching. Thus, it is desired to couple an NFBC with hexagonal boron nitride (hBN) as stable quantum emitters. In this work, we realize a hybrid system of an NFBC and ensemble defect centres in hBN nanoflakes. In this experiment, we fabricate NFBCs with a quality factor of 807 and a resonant wavelength at around 573 nm, which matches well with the fluorescent wavelength of the hBN, using helium-focused ion beam (FIB) system. We also develop a manipulation system to place hBN nanoflakes on a cavity region of the NFBCs and realize a hybrid device with an NFBC. By exciting the nanoflakes via an objective lens and collecting the fluorescence through the NFBC, we observe a sharp emission peak at the resonant wavelength of the NFBC.

2.
Opt Express ; 27(19): 27009-27016, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31674569

RESUMO

Direct optical excitation of a nitrogen-vacancy (NV) center in nanodiamond by light via a nanofiber is of interest for all-fiber-integrated quantum applications. However, the background light induced by the excitation light via the nanofiber is problematic as it has the same optical wavelength as the emission light from the NV center. In this paper, we propose using a nanofiber Bragg cavity to address this problem. We numerically simulate and estimate the electric field of a nanodiamond induced by excitation light applied from an objective lens on a confocal microscope system, a nanofiber, and nanofiber Bragg-cavities (NFBCs). We estimate that by using a nanofiber, the optical excitation intensity can be decreased by roughly a factor of 10 compared to using an objective lens, while for an NFBC with a grating number of 240 (120 for one side) on a nanofiber the optical excitation intensity can be significantly decreased by roughly a factor of 100. This reduction of optical excitation intensity will make it possible to distinguish the fluorescence of the NV center from the background light.

3.
Opt Express ; 27(5): 6792-6800, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30876257

RESUMO

Nanofiber Bragg cavities (NFBCs) are solid-state microcavities fabricated in an optical tapered fiber. NFBCs are promising candidates as a platform for photonic quantum information devices due to their small mode volume, ultra-high coupling efficiencies, and ultra-wide tunability. However, the quality (Q) factor has been limited to be approximately 250, which may be due to limitations in the fabrication process. Here we report high Q NFBCs fabricated using a focused helium ion beam. Whenan NFBC with grooves of 640 periods is fabricated, the Q factor is over 4170, which is more than 16 times larger than that previously fabricated using a focused gallium ion beam.

4.
Opt Express ; 25(7): 7839-7848, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28380902

RESUMO

We experimentally characterize a quantum photonic gate that is capable of converting multiqubit entangled states while acting only on two qubits. It is an important tool in large quantum networks, where it can be used for re-wiring of multipartite entangled states or for generating various entangled states required for specific tasks. The gate can be also used to generate quantum information processing resources, such as entanglement and discord. In our experimental demonstration, we characterized the conversion of a linear four-qubit cluster state into different entangled states, including GHZ and Dicke states. The high quality of the experimental results show that the gate has the potential of being a flexible component in distributed quantum photonic networks.

5.
Phys Rev Lett ; 106(11): 110503, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21469851

RESUMO

We propose and demonstrate a scheme for boosting the efficiency of entanglement distribution based on a decoherence-free subspace over lossy quantum channels. By using backward propagation of a coherent light, our scheme achieves an entanglement-sharing rate that is proportional to the transmittance T of the quantum channel in spite of encoding qubits in multipartite systems for the decoherence-free subspace. We experimentally show that highly entangled states, which can violate the Clauser-Horne-Shimony-Holt inequality, are distributed at a rate proportional to T.

6.
Phys Rev Lett ; 105(21): 210503, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21231277

RESUMO

We demonstrate an optical gate that increases the size of polarization-based W states by accessing only one of the qubits. Using this gate, we have generated three-photon and four-photon W states with fidelities 0.836 ± 0.042 and 0.784 ± 0.028, respectively. We also confirmed the existence of pairwise entanglement in every pair of qubits, including the one that was left untouched by the gate. The gate is applicable to any size of W states and hence is a universal tool for expanding entanglement.

7.
Phys Rev Lett ; 102(13): 130502, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19392337

RESUMO

We propose and experimentally demonstrate a transformation of two Einstein-Podolsky-Rosen photon pairs distributed among three parties into a three-photon W state using local operations and classical communication. We then characterize the final state using quantum state tomography on the three-photon state and on its marginal bipartite states. The fidelity of the final state to the ideal W state is 0.778+/-0.043 and the expectation value for its witness operator is -0.111+/-0.043 implying the success of the proposed local transformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...