Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 63(4): 1210-1219, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25552187

RESUMO

Peroxyauraptenol (PXT) is a peroxide-containing coumarin compound isolated from the seeds of Cnidium monnieri. PXT exerts anti-inflammatory activities, as it reduces the levels of inducible nitric oxide synthase, nitric oxide, IL-6, and NLRP3 inflammasome-derived IL-1ß in lipopolysaccharide-activated macrophages. PXT also exerts anti-inflammatory activity by reducing reactive oxygen species generation (including mitochondrial), mitogen-activated protein kinase, protein kinase C-α/δ phosphorylation, and the release of mitochondrial DNA into the cytosol. In addition, PXT suppresses the phagocytic activity of macrophages and IL-1ß secretion by Klebsiella pneumoniae-infected macrophages. The unique peroxide group is important for the anti-inflammatory activity of PXT, as this activity is reduced when the peroxide group is replaced by a hydroxyl group. These findings suggest that PXT may be a candidate for the development of anti-inflammatory agents or a healthy supplement for preventing and ameliorating inflammation-related diseases.

2.
J Cell Physiol ; 230(4): 863-74, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25294243

RESUMO

The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is a reactive oxygen species-sensitive multiprotein complex that regulates IL-1ß maturation via caspase-1. It also plays an important role in the pathogenesis of inflammation-related disease. Cyclooxygenase-2 (COX-2) is induced by inflammatory stimuli and contributes to the pathogenesis of inflammation-related diseases. However, there is currently little known about the relationship between COX-2 and the NLRP3 inflammasome. Here, we describe a novel role for COX-2 in regulating the activation of the NLRP3 inflammasome. NLRP3 inflammasome-derived IL-1ß secretion and pyroptosis in macrophages were reduced by pharmaceutical inhibition or genetic knockdown of COX-2. COX-2 catalyzes the synthesis of prostaglandin E2 and increases IL-1ß secretion. Conversely, pharmaceutical inhibition or genetic knockdown of prostaglandin E2 receptor 3 reduced IL-1ß secretion. The underlying mechanisms for the COX-2-mediated increase in NLRP3 inflammasome activation were determined to be the following: (1) enhancement of lipopolysaccharide-induced proIL-1ß and NLRP3 expression by increasing NF-κB activation and (2) enhancement of the caspase-1 activation by increasing damaged mitochondria, mitochondrial reactive oxygen species production and release of mitochondrial DNA into cytosol. Furthermore, inhibition of COX-2 in mice in vivo with celecoxib reduced serum levels of IL-1ß and caspase-1 activity in the spleen and liver in response to lipopolysaccharide (LPS) challenge. These findings provide new insights into how COX-2 regulates the activation of the NLRP3 inflammasome and suggest that it may be a new potential therapeutic target in NLRP3 inflammasome-related diseases.


Assuntos
Proteínas de Transporte/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Interleucina-1beta/biossíntese , Animais , Caspase 1/metabolismo , Regulação da Expressão Gênica/fisiologia , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Camundongos , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
3.
PLoS One ; 8(10): e75738, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24124509

RESUMO

Bamboo vinegar (BV), a natural liquid derived from the condensation produced during bamboo charcoal production, has been used in agriculture and as a food additive, but its application to immune modulation has not been reported. Here, we demonstrated that BV has anti-inflammatory activities both in vitro and in vivo. BV reduced inducible nitric oxide synthase expression and nitric oxide levels in, and interleukin-6 secretion by, lipopolysaccharide-activated macrophages without affecting tumor necrosis factor-α secretion and cyclooxygenase-2 expression. The mechanism for the anti-inflammatory effect of BV involved decreased reactive oxygen species production and protein kinase C-α/δ activation. Furthermore, creosol (2-methoxy-4-methylphenol) was indentified as the major anti-inflammatory compound in BV. Impaired cytokine expression and NLR family, pyrin domain-containing 3 (NLRP3) inflammasome activation was seen in mice treated with creosol. These findings provide insights into how BV regulates inflammation and suggest that it may be a new source for the development of anti-inflammatory agents or a healthy supplement for preventing and ameliorating inflammation- and NLRP3 inflammasome-related diseases, including metabolic syndrome.


Assuntos
Ácido Acético/farmacologia , Poaceae/química , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-delta/metabolismo , Animais , Western Blotting , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Feminino , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo
4.
PLoS One ; 8(10): e76754, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24116148

RESUMO

Two polyenylpyrroles from a soil ascomycete Gymnoascus reessii were previously identified as hit compounds in screening for cytotoxicity against lung cancer cells. These compounds and various analogs, which have been previously synthesized and tested for anti-lung cancer cell activity, were tested for anti-inflammatory activity. After preliminary screening for cytotoxicity for RAW 264.7 murine macrophage cells, the non-toxic compounds were tested for anti-inflammatory activity using lipopolysaccharide (LPS)-activated RAW 264.7 cells. Compounds 1h, 1i, and 1n reduced LPS-induced nitric oxide (NO) production, with respective ED50 values of 15 ± 2, 16 ± 2, and 17 ± 2 µM. They also reduced expression of inducible NO synthase and interleukin-6 (IL-6) without affecting cyclooxygenase-2 expression. Compound 1h also reduced secretion of IL-6 and tumor necrosis factor-α by LPS-activated J774A.1 murine macrophage cells, primary mice peritoneal macrophages, and JAWSII murine bone marrow-derived dendritic cells and reduced NLRP3 inflammasome-mediated interleukin-1ß (IL-1ß) secretion by LPS + adenosine triphosphate-activated J774A.1 and JAWSII cells. The underlying mechanisms for the anti-inflammatory activity of compound 1h were found to be a decrease in LPS-induced reactive oxygen species (ROS) production, mitogen-activated protein kinase phosphorylation, and NF-κB activation and a decrease in ATP-induced ROS production and PKC-α phosphorylation. These results provide promising insights into the anti-inflammatory activity of these conjugated polyenes and a molecular rationale for future therapeutic intervention in inflammation-related diseases. They also show how compound 1h regulates inflammation and suggest it may be a new source for the development of anti-inflammatory agents to ameliorate inflammation- and NLRP3 inflammasome-related diseases.


Assuntos
Proteínas de Transporte/metabolismo , Inflamassomos/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Pirróis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Western Blotting , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Inflamassomos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno , Estrutura Molecular , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Quinase C-alfa/metabolismo , Pironas/química , Pironas/farmacologia , Pirróis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...