Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrasonics ; 115: 106434, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33878528

RESUMO

Complementary Golay coded sequences (CGCS) have several advantages over conventional short pulse transmitted signals. Specifically, CGCS allow the signal-to-noise ratio (SNR) to be increased. Moreover, due to matched filtering and compression, echoes resembling the short pulse waveform with substantially higher amplitude can be obtained. However, CGCS require two subsequent transmissions to obtain a single compressed signal. This decreases the data acquisition rate and the frame rate of ultrasound imaging by two-fold. To alleviate this problem, mutually orthogonal Golay complementary sequences (MOGCS) can be used. MOGCS allow the simultaneous transmission of two CGCS pairs to be implemented, yielding the acoustic data for two image frames in one data acquisition cycle. The main objective of this work was an experimental study of the most crucial parameters of the received acoustic signals, e.g. the signal-to-noise ratio (SNR), the side-lobes level (SLL) of the signal and the axial resolution, obtained from simultaneous transmission of two pairs of CGCS comprising a MOGCS set to demonstrate their feasibility of being used in ultrasonography. For this purpose, a simultaneous synthetic transmit aperture method (SSTA) was proposed. The SSTA is based on MOGCS transmission and simultaneous reconstruction of two image frames from a single data acquisition cycle. This doubles the image reconstruction rate in comparison with conventional CGCS signals. In this paper, the ultrasound data from a perfect reflector, commercial phantoms and in vivo measurements were analysed. Two 16-bit long CGCS pairs comprising the MOGCS set were programmed and transmitted using the Verasonics Vantage™ research ultrasound system equipped with a Philips ATL L7-4 linear array ultrasound probe. It was shown that the signal parameters and overall quality of reconstructed B-mode images did not deteriorate when using the MOGCS in comparison to the conventional CGCS and short pulse signals explored so far.


Assuntos
Aumento da Imagem/métodos , Ultrassonografia/métodos , Compressão de Dados , Humanos , Processamento de Imagem Assistida por Computador , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído
2.
Ultrasonics ; 53(2): 570-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23131337

RESUMO

The paper presents the modified multi-element synthetic transmit aperture (MSTA) method for ultrasound imaging. It is based on coherent summation of RF echo signals with apodization weights taking into account the finite size of the transmit subaperture and of the receive element. The work presents extension of the previous study where the modified synthetic transmit aperture (STA) method was considered and verified [1]. In the case of MSTA algorithm the apodization weights were calculated for each imaging point and all combinations of the transmit subaperture and receive element using their angular directivity functions (ADFs). The ADFs were obtained from the exact solution of the corresponding mixed boundary-value problem for periodic baffle system modeling the transducer array. Performance of the developed method was tested using Field II simulated synthetic aperture data of point reflectors for 4MHz 128-element transducer array with 0.3mm pitch and 0.02mm kerf to estimate the visualization depth and lateral resolution. Also experimentally determined data of the tissue-mimicking phantom (Dansk Fantom Service, model 571) obtained using 128 elements, 4MHz, linear transducer array (model L14-5/38) and Ultrasonix SonixTOUCH Research platform were used for qualitative assessment of imaging contrast improvement. Comparison of the results obtained by the modified and conventional MSTA algorithms indicated 15dB improvement of the noise reduction in the vicinity of transducer's surface (1mm depth), and concurrent increase in the visualization depth (86% augment of the scattered amplitude at the depth of 90mm). However, this increase was achieved at the expense of minor degradation of the lateral resolution of approximately 8% at the depth of 50mm and 5% at the depth of 90mm.


Assuntos
Ultrassonografia/métodos , Imagens de Fantasmas
3.
Ultrasonics ; 52(2): 333-42, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21999938

RESUMO

The modified synthetic transmit aperture (STA) algorithm is described. The primary goal of this work was to assess the possibility to improve the image quality achievable using synthetic aperture (SA) approach and to evaluate the performance and the clinical applicability of the modified algorithm using phantoms. The modified algorithm is based on the coherent summation of back-scattered RF echo signals with weights calculated for each point in the image and for all possible combinations of the transmit-receive pairs. The weights are calculated using the angular directivity functions of the transmit-receive elements, which are approximated by a far-field radiation pattern of a narrow strip transducer element vibrating with uniform pressure amplitude over its width. In this way, the algorithm takes into account the finite aperture of each individual element in the imaging transducer array. The performance of the approach developed was tested using FIELD II simulated synthetic aperture data of the point reflectors, which allowed the visualization (penetration) depth and lateral resolution to be estimated. Also, both simulated and measured data of cyst phantom were used for qualitative assessment of the imaging contrast improvement. The experimental data were obtained using 128 elements, 4MHz, linear transducer array of the Ultrasonix research platform. The comparison of the results obtained using the modified and conventional (unweighted) STA algorithms revealed that the modified STA exhibited an increase in the penetration depth accompanied by a minor, yet discernible upon the closer examination, degradation in lateral resolution, mainly in the proximity of the transducer aperture. Overall, however, a considerable (12dB) improvement in the image quality, particularly in the immediate vicinity of the transducer's surface was demonstrated. The modified STA method holds promise to be of clinical importance, especially in the applications where the quality of the "near-field" image, that is the image in the immediate vicinity of the scanhead is of critical importance such as for instance in skin- and breast-examinations.


Assuntos
Ultrassonografia/métodos , Algoritmos , Melhoramento Biomédico , Meios de Contraste , Microbolhas , Álcool de Polivinil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...