Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 347: 126704, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35031436

RESUMO

In this study, the Cladophora sp. is used to provide oxygen to the cathode of the photosynthetic biocathode membrane-less microbial fuel cell (PB-MLMFC). Non-aerated (NA-MLMFC) and mechanically-aerated (MA-MLMFC) MLMFCs are operated under similar operating conditions to evaluate the performance of PB-MLMFC with the presence of Cladophora sp. The PB-MLMFC exhibits the highest dissolved oxygen (DO) concentration, which results in a more efficient oxygen reduction reaction and a significant improvement in the electricity generation performance. The maximum power density of PB-MLMFC is 619.1 mW m-2, which is the highest power density known to be reported for algal cathode MFCs in the literature. The electrochemical analysis shows that theCladophora sp.reduces the charge (Rct) and mass transfer (Rmt) resistances of the PB-MLMFC, and improves the bioelectrochemical activity of the anode microorganisms. The study reveals that Cladophora sp. provides a cost-effective and renewable approach for practical applications of MLMFCs.


Assuntos
Fontes de Energia Bioelétrica , Clorófitas , Eletricidade , Eletrodos , Oxigênio
2.
Chemosphere ; 285: 131538, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34273699

RESUMO

Anode biofilm thickness is a key point for high and sustainable power generation in microbial fuel cells (MFCs). Over time, the formation of a thicker biofilm on anode electrode hinders the power generation performance of MFC by causing a longer electron transfer path and the accumulation of undesirable components in anode biofilm. To overcome these limitations, we used a novel strategy named quorum quenching (QQ) for the first time in order to control the biofilm thickness on the anode surface by inactivation of signal molecules among microorganisms. For this purpose, the isolated QQ bacteria (Rhodococcus sp. BH4) were immobilized into alginate beads (20, 40, and 80 mg/10 ml sodium alginate) and added to the anode chamber of MFCs. The MFC exhibited the best electrochemical activity (1924 mW m-2) with a biofilm thickness of 26 µm at 40 mg Rhodococcus sp. BH4/10 ml sodium alginate. The inhibition of signal molecules in anode chamber reduced the production of extracellular polymeric substance (EPS) by preventing microbial communication amonganode microorganisms. Microscopic observations revealed that anode biofilm thickness and the abundance of dead bacteria significantly decreased with an increase in Rhodococcus sp. BH4 concentration in MFCs. Microbiome diversity showed an apparent difference among the microbial community structures of anode biofilms in MFCs containing vacant and Rhodococcus sp. BH4 beads. The data revealed that the QQ strategy is an efficient application for improving MFC performance and may shed light on future studies.


Assuntos
Fontes de Energia Bioelétrica , Rhodococcus , Biofilmes , Eletricidade , Eletrodos , Matriz Extracelular de Substâncias Poliméricas , Percepção de Quorum
3.
Biotechnol Bioeng ; 117(4): 1012-1023, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31885074

RESUMO

The biofilm thickness in membrane biofilm reactors (MBfRs) is an important factor affecting system performance because excessive biofilm formation on the membrane surface inhibits gas diffusion to the interior of the biofilm, resulting in a significant reduction in the performance of contaminant removal. This study provides innovative insights into the control of biofilm thickness in O2 -based MBfRs by using the quorum quenching (QQ) method. The study was carried out in MBfRs operated at different gas pressures and hydraulic retention times (HRTs) using QQ beads containing Rhodococcus sp. BH4 at different amounts. The highest performance was observed in reactors operated with 0.21 ml QQ bead/cm2 membrane surface area, 12 HRTs and 1.40 atm. Over this period, the performance increase in chemical oxygen demand (COD) removal was 25%, while the biofilm thickness on the membrane surface was determined to be 250 µm. Moreover, acetate and equivalent oxygen flux results reached 6080 and 10 640 mg·m-2 ·d-1 maximum values, respectively. The extracellular polymeric substances of the biofilm decreased significantly with the increase of gas pressure and QQ beads amount. Polymerase chain reaction denaturing gradient gel electrophoresis results showed that the microbial community in the MBfR system changed depending on operating conditions and bead amount. The results showed that the QQ method was an effective method to control the biofilm thickness in MBfR and provide insights for future research.


Assuntos
Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Percepção de Quorum/fisiologia , Rhodococcus/metabolismo , Bactérias/metabolismo , Análise da Demanda Biológica de Oxigênio , Células Imobilizadas/metabolismo , Membranas Artificiais , Oxigênio/metabolismo
4.
Sci Total Environ ; 682: 553-560, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31128369

RESUMO

The membrane aerated biofilms reactor (MABR) is an emerging technology in wastewater treatment with particular advantages including high rate nitrification, and very high oxygen transfer efficiencies. In this study a synthetic feed water incorporating tetracycline (TC) was investigated in a MABR. Simultaneous removal of ammonium and tetracycline (TC) in the reactor, formation of TC transformation products (TPs), and microbial community analysis in the biofilm growing on the membrane were performed. A range of TC and ammonium loading rates and the effect of different intra-membrane oxygen pressures were on treatment performance were systematically investigated. Successful nitrification and TC degradation were achieved with the highest TC removal (63%) obtained at a HRT of 18 h HRT and 0.41 bar gas pressure. It has shown that different operating conditions (HRT and gas pressure) do not cause a significant change in ammonium removal. The concentration of TPs such as ETC, EATC, and ATC was determined to be at the ppb level. Molecular results showed that MABR reactor was mainly dominated by ß-proteobacteria. The relative abundance of this group decreased in parallel with the increasing ammonium and TC loading.


Assuntos
Compostos de Amônio/química , Tetraciclina/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Biofilmes , Reatores Biológicos , Membranas Artificiais , Oxirredução
5.
Bioelectrochemistry ; 128: 118-125, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30978518

RESUMO

Nitinols (Nickel-titanium alloys) have a good electrical conductivity and biocompatibility with human tissue and bacteria and, therefore, can be effectively used as an anode material in bioelectrochemical systems. This paper aimed to use nitinols (at different Ni/Ti ratios) as an anode material for microbial fuel cells (MFCs) in order to achieve higher power density. The maximum power densities of the MFCs using NiTi-1, NiTi-2, and NiTi-3 electrodes were 555 mW/m2, 811 mW/m2, and 652 mW/m2, respectively. More bacterial adhesion was observed on the NiTi-2 electrode. Electrochemical impedance spectroscopy (EIS) results showed low charge transfer resistance at MFCs fabricated with NiTi. The biofilm observations indicate that bacterial attachment is better with NiTi-2 as compared with that on NiTi-1 and NiTi-3. The resulting mesopore and macropore rich structure significantly promote microbial colonization, enabling formation of compact electroactive biofilms with additional benefit from the excellent biocompatibility and chemical stability of NiTi-2. Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) results indicated that five groups of bacteria were the dominant phyla in the MFCs: environmental samples, b-proteobacteria, g-proteobacteria, d-proteobacteria, and CFB group bacteria. The high biocompatibility, electrical conductivity and stability of nitinols make them a more attractive anode material for MFCs.


Assuntos
Ligas/farmacologia , Fontes de Energia Bioelétrica , Eletrodos , Aderência Bacteriana , Biofilmes , Eletroforese em Gel de Gradiente Desnaturante/métodos , Espectroscopia Dielétrica , Condutividade Elétrica , Microscopia Eletrônica de Varredura , Reação em Cadeia da Polimerase/métodos , Proteobactérias/classificação , Proteobactérias/fisiologia , Propriedades de Superfície
6.
Environ Sci Pollut Res Int ; 23(21): 21703-21711, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27522205

RESUMO

Tetracycline (TC) in aqueous environment could be reductively degraded by using a hydrogen-based membrane biofilm reactor (H2-MBfR) under denitrifying conditions as it provides an appropriate environment for the antibiotic-degrading bacteria in biofilm communities. This study evaluates the performance of H2-MBfR for simultaneous removal of nitrate and TC, formation of degradation products of TC, and community analysis of the biofilm grown on the gas-permeable hollow fiber membranes. Hence, a H2-MBfR receiving approximately 20 mg N/l nitrate and 0.5 mg/l TC was operated under different H2 pressures, hydraulic retention times (HRTs), and influent TC concentrations in order to provide various nitrate and TC loadings. The results showed that H2-MBfR accomplished successfully the degradation of TC, and it reached TC removal of 80-95 % at 10 h of HRT and 6 psi (0.41 atm) of H2 gas pressure. TC degradation took placed at increased HRT and H2 pressures while nitrate was the preferred electron acceptor for most of the electrons generated from H2 oxidation used for denitrification. The transformation products of TC were found at part per billion levels through all the experiments, and the concentrations decreased with the increasing HRT regardless of H2 pressure. Analyses from clone library showed that the microbial diversity at the optimal conditions was higher than that at the other periods. The dominant species were revealed to be Betaproteobacteria, Acidovorax caeni, and Alicycliphilus denitrificans.


Assuntos
Biofilmes , Reatores Biológicos/microbiologia , Hidrogênio/química , Tetraciclina/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Tetraciclina/análise , Tetraciclina/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...