Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 209: 248-59, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25953410

RESUMO

Drug loaded implants also called drug-eluting implants have proven their benefits over simple implants. Among the developed manufacturing processes, the supercritical CO2 (scCO2) assisted impregnation has attracted growing attention to load Active Pharmaceutical Ingredients into polymer implants since it enables to recover a final implant free of any solvent residue and to operate under mild temperature which is suitable for processing with thermosensitive drugs. This paper is a review of the state-of-the-art and the application of the scCO2 assisted impregnation process to prepare drug-eluting implants. It introduces the process and presents its advantages for biomedical applications. The influences of the characteristics of the implied binary systems and of the experimental conditions on the drug loading are described. Then, the various current applications of this process for manufacturing drug-eluting implants are reviewed. Finally, the new emerging variations of this process are described.


Assuntos
Dióxido de Carbono/química , Implantes de Medicamento/química , Solventes/química , Animais , Composição de Medicamentos , Humanos , Polímeros/química
2.
Analyst ; 140(3): 869-79, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25471265

RESUMO

An original experimental set-up combining a FTIR micro-spectrometer with a high pressure cell has been built in order to analyze in situ the impregnation of a solute into microscopic polymer samples, such as fibers or films, subjected to supercritical CO2. Thanks to this experimental set-up, key factors governing the impregnation process can be simultaneously followed such as the swelling of the polymeric matrix, the CO2 sorption, the kinetics of impregnation and the drug loading into the matrix. Moreover, the solute/polymer interactions and the speciation of the solute can be analyzed. We have monitored in situ the impregnation of aspirin and ketoprofen into PEO (Polyethylene Oxide) platelets at T = 40 °C and P = 5; 10 and 15 MPa. The kinetics of impregnation of aspirin was quicker than the one of ketoprofen and the final drug loading was also higher in the case of aspirin. Whereas the CO2 sorption and the PEO swelling remain constant when PEO is just subjected to CO2 under isobaric conditions, we noticed that both parameters can increase while the drug impregnates PEO. Coupling these results with DSC measurements, we underlined the plasticizing effect of the drug that also leads to a decrease in the crystallinity of PEO in situ thus favoring the sorption of CO2 molecules into the matrix and the swelling of the matrix. The plasticizing effect increases with the drug loading. Finally, the speciation of drugs was investigated considering the shift of the carboxyl bands of the drugs. Both drugs were found to be mainly homogeneously dispersed into PEO.


Assuntos
Aspirina/química , Dióxido de Carbono/química , Cetoprofeno/química , Polietilenoglicóis/química , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Varredura Diferencial de Calorimetria , Plastificantes/química , Pressão , Termodinâmica
3.
J Chem Phys ; 133(21): 214505, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21142306

RESUMO

Combining infrared spectroscopy and molecular dynamics simulations, we have investigated the structural and dynamical properties of ammonia from liquid state (T = 220 and 303 K) up to the supercritical domain along the isotherm T = 423 K. Infrared spectra show that the N-H stretching and bending modes are significantly perturbed which is interpreted as a signature of the change of the local environment. In order to compare the experimental spectra with those obtained using molecular dynamics simulation, we have used a flexible four sites model which allows to take into account the anharmonicity in all the vibration modes particularly that of the inversion mode of the molecule. A good agreement between our experimental and calculated spectra has been obtained hence validating the intermolecular potential used in this study to simulate supercritical ammonia. The detailed analysis of the molecular dynamics simulation results provides a quantitative insight of the relative importance of hydrogen bonding versus nonhydrogen bonded interactions that governs the structure of fluid ammonia.


Assuntos
Amônia/química , Simulação de Dinâmica Molecular , Modelos Químicos , Espectrofotometria Infravermelho , Termodinâmica , Vibração
4.
J Phys Chem B ; 114(46): 15003-10, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-21028760

RESUMO

Molecular dynamics simulations of ammonia were performed in the (N,P,T) ensemble along the isobar 135 bar and in the temperature range between 250 and 500 K that encompasses the sub and supercritical states of ammonia. Six simple interaction potential models (Lennard-Jones pair potential between the atomic sites, plus a Coulomb interaction between atomic partial charges) of ammonia reported in the literature were analyzed. Liquid-gas coexistence curve, critical temperature, and structural data (radial distribution functions) have been calculated for all models and compared with the corresponding experimental data. After choosing the appropriate potential model, we have investigated the local structure by analyzing the nearest neighbor radial, mutual orientation, and interaction energy distributions. The change in the local structure was traced back to the change of the nonlinear behavior (which is more pronounced at low temperatures) of the average distance between a reference ammonia molecule and its subsequent nearest neighbor. Our results suggest to use the position of the maximum in the fluctuation of the average distance to define the border of the first solvation shell (particularly at high temperature when the minimum of the radial distribution is not well-defined). Indeed, the effect of the temperature on the position of this maximum shows clearly that the spatial extent of the solvation shell increases with a concomitant decrease of the involved number of ammonia molecules. Furthermore, our results show that the signature of the hydrogen bonding is mainly observed for temperature below 300 K. This signature is quantified by a short distance contribution to the closest radial nearest neighbor distribution, by a strong mutual orientation (defined by the angles between the axis joining the nitrogen atoms and the molecular axes) and by a strong attractive character of the total interaction energy.

5.
J Chem Phys ; 133(3): 034102, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20649303

RESUMO

We present a method for automatic computation of infrared (IR) intensities using parallel variational multiple window configuration interaction wave functions (P_VMWCI(2) algorithm). Inclusion of both mechanical and electrical anharmonic effects permits fundamental vibrational frequencies, including combinations and overtones, to be assigned. We use these developments to interpret the near-IR (NIR) and mid-IR (MIR) spectra of individual water clusters (H2O)(n) (n=1-4). Cyclic and linear systems are studied to provide equivalent reference theoretical data to investigate the structure of water as a function of density using NIR and MIR experimental spectra. Various density functional theory methods for generating the potential energy surface have been compared to reference results obtained at the CCSD(T) level [X. Huang et al., J. Chem. Phys. 128, 034312 (2008)]. For cyclic clusters, the IR intensities and frequencies obtained using B1LYP/cc-pVTZ are found to be in very good agreement with the available experimental values and of the same orders of magnitude as the reference theoretical values. These data are completed by the vibrational study of linear systems.

6.
J Chem Phys ; 133(3): 034103, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20649304

RESUMO

The present study is aimed at a detailed analysis of supercritical water structure based on the combination of experimental vibrational spectra as well as molecular modeling calculations of isolated water clusters. We propose an equilibrium cluster composition model where supercritical water is considered as an ideal mixture of small water clusters (n=1-3) at the chemical equilibrium and the vibrational spectra are expected to result from the superposition of the spectra of the individual clusters, Thus, it was possible to extract from the decomposition of the midinfrared spectra the evolution of the partition of clusters in supercritical water as a function of density. The cluster composition predicted by this model was found to be quantitatively consistent with the near infrared and Raman spectra of supercritical water analyzed using the same procedure. We emphasize that such methodology could be applied to determine the portion of cluster in water in a wider thermodynamic range as well as in more complex aqueous supercritical solutions.


Assuntos
Modelos Moleculares , Vibração , Água/química , Conformação Molecular , Teoria Quântica , Espectrofotometria Infravermelho , Análise Espectral , Análise Espectral Raman
7.
J Phys Chem A ; 111(51): 13371-9, 2007 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-18047303

RESUMO

Polarized and depolarized Raman spectra of CO2-acetone mixtures have been measured along the isotherm 313 K as a function of CO2 concentration (0.1-0.9 molar fractions in CO2) by varying the pressure from 0.2 up to 8 MPa. Upon CO2 addition, a new band appears at about 655 cm(-1) and is assigned to the lower frequency nu 2(1) component of the bending mode after degeneracy removal due to the formation of a 1:1 electron donor acceptor (EDA) CO2 complex. The equilibrium constant associated with the complex formation was estimated and found close to those of contact charge transfer complexes. The main modifications of the Fermi dyad of CO2 in the mixtures compared with that of pure CO2 at equivalent density have been assessed. The band-shape analysis revealed that each dyad component is described by two Lorentzian profiles, showing that a tagged CO2 molecule probes two kinds of environment in its first shell of neighbors. The first one involves nonspecific interactions of CO2 with surrounding acetone whereas the second is assigned to the signature of 'transient' CO2 complexes formed with acetone. An upper bound life time of the complex has been estimated to be 8 ps. In addition, a broad band has been detected between the Fermi dyad peaks at about 1320 cm(-1) and its origin interpreted as a further evidence of the CO2-acetone heterodimer formation. Finally, the values of the equilibrium concentration of the heterodimer versus the total concentration of CO2 deduced from the analysis of the nu 2(1) band and from the Fermi dyad have been compared, and the difference is interpreted as due to a lack of theoretical approach of Fermi resonance transitions associated with species existing in different environments.

8.
J Chem Phys ; 125(9): 094503, 2006 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16965093

RESUMO

The near and midinfrared spectra of 1-octanol (and 2-octanol) have been measured along the liquid-gas coexistence curve from room temperature up to the critical point and in the supercritical domain along the isotherm T=385 degrees C (and T=365 degrees C) above the critical point of both 1-octanol and 2-octanol for pressure ranging from 0.5 up to 15 MPa. The density values of SC 1- and 2-octanol have been estimated by analysing the near infrared (NIR) spectra in the 3nu(a)(CH) region. A quantitative analysis of the absorption band associated with the OH stretching vibration [nu(OH)] and its first and second overtones [2nu(OH) and 3nu(OH)] was carried out in order to estimate the percentage of "free" OH groups in both alcohols in the whole thermodynamic domain investigated here. Very consistent results have been obtained from the independent analysis of these three different absorption bands which gave us a good confidence in the degree of hydrogen bonding reported here for 1- and 2-octanol. Thus, the percentage of free OH groups which is around 5% in liquid 1-octanol under ambient conditions strongly increase up to 70%-80% at a temperature of about 340 degrees C. Then, in the supercritical domain, upon a decrease of the density from 0.4 to 0.1 g cm(-3), the fraction of free hydroxyl groups is nearly constant presenting a plateaulike regime around 80%. As the density decreases again, this plateau regime is followed by a further increase of X(nb) which reaches a value of 96% for the system in the gaseous phase (0.01 g cm(-3); P=0.45 MPa). Finally, it comes out from this study that the percentage of free OH groups is always greater in 2-octanol than in 1-octanol at the same density.

9.
J Phys Chem A ; 110(28): 8986-9001, 2006 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-16836463

RESUMO

We have investigated the infrared (IR) vibrational spectra of acetaminophen (N(4-hydroxyphenyl) acetamide or paracetamol) complexes formed with ethanol and acetone in relation to the nature of the specific intermolecular interactions involved in the stabilization of the complexes. The structures and binding energies of the complexes have been determined using Hartree-Fock (HF) and DFT-B3PW91 procedures and different Pople's basis sets as well. The main results are presented and discussed by considering the hydroxyl (OH), amino (NH), and carbonyl (CO) chemical groups of acetaminophen interacting with the acetone or ethanol molecules either separately or in conjunction in the complex formation. The frequency shifts and IR intensity variations associated with the internal modes of acetaminophen (namely nu(OH), nu(NH), and nu(CO)) as well as the most pertinent vibrational probes of ethanol (nu(OH)) and acetone (symmetric nu(CO) and nu(CCC) stretching modes) interacting with acetaminophen have been analyzed. The predicted spectral changes have been critically discussed in comparison with IR absorption measurements of acetaminophen dissolved as a solute in ethanol or acetone CO2 expanded solutions. It is argued that the exchange-correlation contribution taken into account in DFT calculations is likely significant in determining the main IR spectral features of acetaminophen complexes formed with acetone or involving hydrogen-bonded as with ethanol.


Assuntos
Acetaminofen/química , Acetona/química , Etanol/química , Modelos Químicos , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Espectrofotometria Infravermelho
10.
J Chem Phys ; 123(22): 224501, 2005 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-16375483

RESUMO

Raman scattering combined with near- and mid-infrared absorption spectroscopies was used to investigate the evolution of the local order in the water rich phase of water-CO(2) mixtures under isobaric heating (T=40-360 degrees C, P=250 bars). The quantitative analysis of the spectra shows that tetramers and larger oligomers are the main constituents of water at moderate temperatures below 80 degrees C. As the temperature increases, the dimer and trimer concentrations considerably increase at the expense of larger oligomers. Finally, water dimers are predominant at the highest temperature investigated close to the temperature of total miscibility of the mixture (T=366 degrees C, P=250 bars). This result is consistent with our previous investigation [R. Oparin T. Tassaing, Y. Danten, and M. Besnard, J. Chem. Phys. 120, 10691 (2004)] on water dissolved in the CO(2) rich phase where we found that close to the temperature of total miscibility water also exists mainly under dimeric form. The current study combined with that mentioned above provides a model investigation of the evolution of the state of aggregation of water molecules in binary mixture involving a hydrophobic solvent in a wide range of temperature.

11.
J Chem Phys ; 123(7): 074505, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16229599

RESUMO

Far-infrared (FIR) and mid-infrared (MIR) profiles of D2O infinitely dilute in supercritical CO2 have been studied using molecular-dynamics simulations. For this purpose, we have proposed an intermolecular potential model taking implicitly into account electron donor-acceptor (EDA) interactions between water and CO2 evaluated from ab initio calculations of the intermolecular potential-energy surface (IPS). Interaction-induced dipole mechanisms have been also taken into account in addition to the water permanent dipole to evaluate the simulated FIR profiles of water and CO2 polarizable molecules. They were found to play a minor role in the genesis of the FIR profiles of water/CO2 under supercritical conditions. The analysis of the reorientational dynamics of D2O shows that the rotational dynamics of water is weakly anisotropic due to the EDA interactions which affect more specifically the reorientational motions of the C2 symmetry axis of solute. These results have been used to assess the contribution of the vibrational relaxation in the experimental mid-infrared profiles associated with the nu1 symmetric and nu3 antisymmetric stretching and nu2 bending modes of D2O. It was found that the rotational dynamics mainly contribute to the broadening of the infrared (IR) profiles. Nevertheless, the vibrational processes play a role in the frequency shifts of the band centers and the relative intensity enhancements of the nu1 and nu3 modes of D2O. In particular, the EDA interactions between water and CO2 lead to the appearance of a well-defined IR band of the nu1 mode of D2O. Finally, a comparison with another model taking only into account dipole-quadrupole electrostatic interactions between water and CO2 molecules clearly reveals that EDA interactions have to be considered to reproduce both MIR and FIR measurements. From this point of view CO2 can be classified on a hydrophilic solvent scale based upon the solubility criterion as an intermediate solvent between "inert" xenon and carbon tetrachloride.

12.
J Chem Phys ; 122(17): 174512, 2005 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15910050

RESUMO

We have investigated the state of aggregation in supercritical tert-butanol (T = 523 K,0.05 < rho < 0.4 g cm(-3)) by means of vibrational spectroscopies (infrared and Raman) and molecular-dynamics (MD) simulations. A quantitative band shape analysis of the spectra associated with the OH stretching mode of tert-butanol has been done using activities computed by ab initio calculations on small clusters. This allows us to determine the degree of hydrogen bonding and populations of oligomers. These latter quantities have been derived from MD simulations and very consistent results are found with experiments. These results show that hydrogen bond still exist in supercritical tert-butanol and that the fluid mainly consists of oligomers smaller than tetramers.

13.
J Chem Phys ; 122(9): 094505, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15836148

RESUMO

The local order in aqueous NaCl solutions diluted in supercritical carbon dioxide at constant pressure as a function of NaCl concentration and temperature has been investigated using near and mid infrared absorption spectroscopy. The near IR results have allowed us to estimate the water concentration in CO(2) rich phase, whereas the state of water aggregation in CO(2) phase was investigated using mid IR spectroscopy. The analysis of the band shape variations of the OD stretching mode of HOD led us to conclude that below 100 degrees C, water molecules dissolved in CO(2) exist only under their monomeric form, whatever the salt concentration is, whereas hydrogen-bonded species, namely, dimers start to appear at higher temperatures. Larger aggregates have a negligible concentration in the range of temperature-pressure investigated. Using near and mid infrared data, we have calculated the concentrations of water species in the CO(2) phase. Upon heating, it was found that the concentration of dimers considerably increases at the expense of the monomers and only dimers are detected in carbon dioxide at highest temperatures. Changing the salt concentration affects significantly the concentration of monomers and decreases strongly the dimers population as the solution becomes progressively saturated in salt. In the saturated solution, at 340 degrees C, the dimer concentration is at least two times smaller than in the binary water-CO(2) mixture. These findings are in qualitative agreement with existing thermodynamics data showing that addition of NaCl to the binary H(2)O-CO(2) system shifts the range of partial miscibility of water and CO(2) towards higher pressure and temperature.

14.
J Phys Chem A ; 109(14): 3250-6, 2005 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16833656

RESUMO

In this paper, we have calculated using the ab initio method the IR vibrational spectra of complexes of CO2 formed with water (sp3 O-donating atom). Binding energies and structures of the CO2-H2O and water-(CO2)2 complexes have been determined at the second-order level of the Moller-Plesset perturbation theory (MP2) using Dunning's basis sets. The results are presented and critically discussed in terms of the nature of the water-CO2 interactions, electron donor acceptor (EDA) and weak O...H-O interactions. For water-(CO2)2 trimer, it is also shown that the contribution to the interaction energy of the irreducible three-bodies remains relatively negligible. We have analyzed the frequency shifts and the IR and Raman intensity variations under the complex formation. We have particularly emphasized the splitting of the 2 bending mode of CO2 and stretching modes of water, which have been revealed as the most pertinent probes to assess the nature of the forces involved in the different complexes. Finally, because water can play the role of Lewis base and acid as well, we found that weak O...H-O interactions can cooperate with EDA interactions in trimer, leading to very specific spectral signatures that are further discussed.


Assuntos
Dióxido de Carbono/química , Modelos Químicos , Água/química , Dimerização , Ligação de Hidrogênio , Espectrofotometria Infravermelho
15.
J Chem Phys ; 120(22): 10691-8, 2004 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-15268095

RESUMO

A combination of Raman scattering spectroscopy and infrared absorption was applied to investigate the structural evolution of water dissolved in supercritical carbon dioxide under isobaric heating (T=40-340 degrees C, P=250 bar). Quantitative analysis of experimental spectra allowed us to determine that at relatively moderate temperatures water dissolved in CO(2)-rich phase exists only under monomeric form (solitary water surrounding by CO(2) molecules), but hydrogen-bonded species, namely, dimers, begin to appear upon heating. At the same time, the ratio of dimers to monomers concentration increases with further temperature increase and at temperatures close to the temperature of total miscibility of the mixture (T=366 degrees C, P=250 bar), water dimers only are present in the CO(2)-rich phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...