Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Contrast Media Mol Imaging ; 11(5): 396-404, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27396584

RESUMO

Idiopathic pulmonary fibrosis is a devastating disease. Animal models are critical to develop new diagnostic approaches. We investigate here whether the application of an ultra-short echo time MRI sequence combined with the intra-tracheal administration of Gd-based nanoparticles can help to visualize and characterize pulmonary fibrosis in mice. 21 mice were imaged. Treated mice were administered bleomycin. MRI was used for longitudinal detection of bleomycin-induced lung injury from Day 1 up to Day 60. On Day 30, all mice received nanoparticles and MR images were acquired. A signal enhancement of 120% and 50% in fibrotic lesions and healthy tissues respectively was obtained. A twofold increase of contrast-to-noise ratio between fibrotic and healthy tissue was also observed, leading to a more accurate delineation of the extent of fibrosis. The elimination time constant of the nanoparticles was 54% higher in fibrotic lesions. Bleomycin-induced lung injury can be monitored using MRI. Intra-tracheal administration of Gd-based nanoparticles enabled us to enhance fibrotic tissue in lungs but also to extract imaging biomarkers that quantify elimination and diffusion of contrast agents and can characterize fibrotic tissue. The added value of MRI associated with pulmonary administration of contrast agents is key to better understand the lung fibrotic process and monitor drug response in pre-clinical studies, which will be valuable for translational applications. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Gadolínio/farmacocinética , Imageamento por Ressonância Magnética/métodos , Nanopartículas Metálicas/química , Fibrose Pulmonar/diagnóstico por imagem , Animais , Bleomicina , Meios de Contraste/farmacocinética , Vias de Administração de Medicamentos , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Camundongos , Fibrose Pulmonar/induzido quimicamente , Traqueia
2.
NMR Biomed ; 28(6): 738-46, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25921808

RESUMO

The development of new non-invasive diagnostic and therapeutic approaches is of paramount importance in order to improve the outcome of patients with glioblastoma (GBM). In this work we investigated a completely non-invasive pre-clinical protocol to effectively target and detect brain tumors through the orotracheal route, using ultra-small nanoparticles (USRPs) and MRI. A mouse model of GBM was developed. In vivo MRI acquisitions were performed before and after intravenous or orotracheal administration of the nanoparticles to identify and segment the tumor. The accumulation of the nanoparticles in neoplastic lesions was assessed ex vivo through fluorescence microscopy. Before the administration of contrast agents, MR images allowed the identification of the presence of abnormal brain tissue in 73% of animals. After orotracheal or intravenous administration of USRPs, in all the mice an excellent co-localization of the position of the tumor with MRI and histology was observed. The elimination time of the USRPs from the tumor after the orotracheal administration was approximately 70% longer compared with intravenous injection. MRI and USRPs were shown to be powerful imaging tools able to detect, quantify and longitudinally monitor the development of GBMs. The absence of ionizing radiation and high resolution of MRI, along with the complete non-invasiveness and good reproducibility of the proposed protocol, make this technique potentially translatable to humans. To our knowledge, this is the first time that the advantages of a needle-free orotracheal administration route have been demonstrated for the investigation of the pathomorphological changes due to GBMs.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Compostos Heterocíclicos/farmacocinética , Imageamento por Ressonância Magnética/métodos , Compostos Organometálicos/farmacocinética , Administração Oral , Animais , Linhagem Celular Tumoral , Meios de Contraste/administração & dosagem , Feminino , Compostos Heterocíclicos/administração & dosagem , Aumento da Imagem/métodos , Taxa de Depuração Metabólica , Camundongos , Camundongos Nus , Nanopartículas , Compostos Organometálicos/administração & dosagem , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
3.
NMR Biomed ; 27(8): 971-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24913958

RESUMO

One of the main reasons for the dismal prognosis of lung cancer is related to the late diagnosis of this pathology. In this study, we evaluated the potential of optimized lung MRI techniques as a completely non-invasive approach for non-small-cell lung cancer (NSCLC) MRI in vivo detection and follow-up in a mouse model of lung adenocarcinoma expressing the luciferase gene. Bioluminescent lung tumour cells were orthotopically implanted in immuno-deficient mice. Ultra-short echo-time (UTE) MRI free-breathing acquisitions were compared with standard gradient-echo lung MRI (FLASH) using both respiratory-gated and free-breathing protocols. The MRI findings were validated against bioluminescence imaging (BLI) and gold-standard histopathology analysis. Adenocarcinoma-like pathological tissue was successfully identified in all the mice with gated-FLASH and non-gated UTE MRI, and good tumour co-localization was found between MRI, BLI and histological analyses. An excellent or good correlation was found between the measured bioluminescent signal and the total tumour volumes quantified with UTE MRI or gated-FLASH MRI, respectively. No significant correlation was found when the tumours were segmented on non-gated MR FLASH images. MRI was shown to be a powerful imaging tool able to detect, quantify and longitudinally monitor the development of sub-millimetric NSCLCs. To our knowledge, this is the first study which proves the feasibility of a completely non-invasive MRI quantitative detection of lung adenocarcinoma in freely breathing mice. The absence of ionizing radiation and the high-resolution of MRI, along with the complete non-invasiveness and good reproducibility of the proposed non-gated protocol, make this imaging tool ideal for direct translational applications.


Assuntos
Neoplasias Pulmonares/diagnóstico , Imageamento por Ressonância Magnética , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Feminino , Seguimentos , Humanos , Medições Luminescentes , Camundongos Nus , Razão Sinal-Ruído , Fatores de Tempo
4.
Proc Natl Acad Sci U S A ; 111(25): 9247-52, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24927562

RESUMO

One of the main reasons for the dismal prognosis of lung cancer is related to the late diagnosis of this pathology. In this work, we evaluated the potential of optimized lung MRI techniques and nebulized ultrasmall multimodal gadolinium-based contrast agents [ultrasmall rigid platforms (USRPs)] as a completely noninvasive approach for non-small-cell lung cancer (NSCLC) in vivo detection. A mouse model of NSCLC expressing the luciferase gene was developed. Ultrashort echo-time free-breathing MRI acquisitions were performed before and after i.v. or intrapulmonary administration of the nanoparticles to identify and segment the tumor. After orotracheal or i.v. administration of USRPs, an excellent colocalization of the position the tumor with MRI, bioluminescence and fluorescence reflectance imaging, and histology was observed in all mice. Significantly higher signal enhancements and contrast-to-noise ratios were observed with orotracheal administration using lower doses, reducing the toxicity issues and the interobserver variability in tumor detection. The observations suggested the existence of an unknown original mechanism (different from the enhanced permeability and retention effect) responsible for this phenomenon. MRI and USRPs were shown to be powerful imaging tools able to detect, quantify, and longitudinally monitor the development of submillimetric NSCLCs. The absence of ionizing radiation and high resolution MRI, along with the complete noninvasiveness and good reproducibility of the proposed protocol, make this technique potentially translatable to humans. To our knowledge this is the first time that the advantages of an orotracheal administration route are demonstrated for the investigation of the pathomorphological changes due to NSCLCs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Meios de Contraste/farmacologia , Gadolínio/farmacologia , Neoplasias Pulmonares/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Nanopartículas , Administração por Inalação , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Nebulizadores e Vaporizadores , Transplante de Neoplasias , Radiografia
5.
Anal Chem ; 86(3): 1783-8, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24432871

RESUMO

An approach for sensitive magnetic resonance detection of metal cations is proposed. Combining the use of hyperpolarized (129)Xe NMR and of a cage-molecule functionalized by a ligand able to chelate different cations, we show that simultaneous detection of lead, zinc, and cadmium ions at nanomolar concentration is possible in short time, thanks to fast MRI sequences based on the HyperCEST scheme.


Assuntos
Cádmio/análise , Técnicas de Química Analítica/instrumentação , Poluentes Ambientais/análise , Chumbo/análise , Cádmio/química , Poluentes Ambientais/química , Chumbo/química , Espectroscopia de Ressonância Magnética
6.
Chemistry ; 19(19): 6089-93, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23494947

RESUMO

We describe the synthesis of a highly water-soluble cryptophane 1 that can be seen as a universal platform for the construction of (129)Xe magnetic resonance imaging (MRI)-based biosensors. Compound 1 is easily functionalized by Huisgen cycloaddition and exhibits excellent xenon-encapsulation properties. In addition, 1 is nontoxic at the concentrations typically used for hyperpolarized (129)Xe MRI.


Assuntos
Técnicas Biossensoriais/métodos , Espectroscopia de Ressonância Magnética/métodos , Compostos Policíclicos/química , Xenônio/química , Química Click , Água
8.
Chem Commun (Camb) ; 47(34): 9702-4, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21792442

RESUMO

Cryptophane-111 is one of the best candidates for (129)Xe MRI-based applications. Herein, we report the first metal-free and water-soluble cryptophane-111 core which involves an efficient and unusual post-synthetic sulfonation procedure.


Assuntos
Compostos Policíclicos/química , Água/química , Metais/química , Solubilidade , Ácidos Sulfônicos/química
9.
Bioorg Med Chem ; 19(13): 4135-43, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21605977

RESUMO

For detection of biological events in vitro, sensors using hyperpolarized (129)Xe NMR can become a powerful tool, provided the approach can bridge the gap in sensitivity. Here we propose constructs based on the non-selective grafting of cryptophane precursors on holo-transferrin. This biological system was chosen because there are many receptors on the cell surface, and endocytosis further increases this density. The study of these biosensors with K562 cell suspensions via fluorescence microscopy and (129)Xe NMR indicates a strong interaction, as well as interesting features such as the capacity of xenon to enter the cryptophane even when the biosensor is endocytosed, while keeping a high level of polarization. Despite a lack of specificity for transferrin receptors, undoubtedly due to the hydrophobic character of the cryptophane moiety that attracts the biosensor into the cell membrane, these biosensors allow the first in-cell probing of biological events using hyperpolarized xenon.


Assuntos
Técnicas Biossensoriais/métodos , Transferrina/química , Linhagem Celular Tumoral , Humanos , Espectroscopia de Ressonância Magnética , Ligação Proteica , Isótopos de Xenônio/química , Isótopos de Xenônio/metabolismo
10.
Org Lett ; 13(9): 2153-5, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21456606

RESUMO

The development of molecular imaging using hyperpolarized xenon MRI needs highly optimized biosensors. Cryptophane-111 and cryptophane-222 are promising candidates that show complementary encapsulation properties although they only differ by the length of the three alkane linkers joining two cyclotriphenolene units. Cryptophanes containing both methoxy and ethoxy linkers have never been synthesized. Here we synthesize two new cages with intermediate internal volumes, in two steps from cyclotriphenolene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...