Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 155(5): 797-808, 2001 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-11724821

RESUMO

Sporulation of Saccharomyces cerevisiae is a developmental process in which a single cell is converted into four haploid spores. GIP1, encoding a developmentally regulated protein phosphatase 1 interacting protein, is required for spore formation. Here we show that GIP1 and the protein phosphatase 1 encoded by GLC7 play essential roles in spore development. The gip1Delta mutant undergoes meiosis and prospore membrane formation normally, but is specifically defective in spore wall synthesis. We demonstrate that in wild-type cells, distinct layers of the spore wall are deposited in a specific temporal order, and that gip1Delta cells display a discrete arrest at the onset of spore wall deposition. Localization studies revealed that Gip1p and Glc7p colocalize with the septins in structures underlying the growing prospore membranes. Interestingly, in the gip1Delta mutant, not only is Glc7p localization altered, but septins are also delocalized. Similar phenotypes were observed in a glc7-136 mutant, which expresses a Glc7p defective in interacting with Gip1p. These results indicate that a Gip1p-Glc7p phosphatase complex is required for proper septin organization and initiation of spore wall formation during sporulation.


Assuntos
Proteínas de Transporte/metabolismo , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Esporos Fúngicos/metabolismo , Proteínas de Transporte/genética , Parede Celular/química , Proteínas Fúngicas/genética , Meiose/fisiologia , Microscopia de Fluorescência , Fosfoproteínas Fosfatases/genética , Proteína Fosfatase 1 , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/fisiologia , Esporos Fúngicos/ultraestrutura , Fatores de Tempo
2.
Mol Genet Genomics ; 265(4): 622-35, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11459182

RESUMO

GAC1 and GLC7 encode regulatory and catalytic subunits, respectively, of a type 1 phosphatase (PP1) in Saccharomyces cerevisiae that controls glycogen synthesis by regulating the phosphorylation state of glycogen synthase (Gsy2p). To investigate the role of Gac1p in this process, a set of GAC1 deletions were tested for their ability to complement a gac1 null mutation and to associate with Glc7p and with Gsy2p. The N-terminal 93 amino acids of Gaclp are necessary and sufficient for the interaction with Glc7p, whereas a region spanning residues 130-502 is required for Gsy2p binding. Both domains are required for full activity in vivo, although the Glc7p-binding domain retains some residual activity and can alter the phosphorylase a phosphatase activity of Glc7p in vitro. Further mutational analysis showed that Val71 and Phe73 of Gaclp are necessary for binding to Glc7p, while Asn356 and Tyr357 of Gaclp are necessary for binding to Gsy2p. These results suggest that Gac1p targets PPI to its substrate Gsy2p and that Gac1p may alter the catalytic activity of PP . Our data also show that overexpression of Gac1p affects glucose repression and ion homeostasis, two additional targets of GLC7, suggesting that multiple regulatory subunits compete for Glc7p binding in vivo.


Assuntos
Proteínas Fúngicas/química , Glicogênio/metabolismo , Fosfoproteínas Fosfatases/química , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Substituição de Aminoácidos , Catálise , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Glicogênio Sintase/metabolismo , Homeostase , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/isolamento & purificação , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/fisiologia , Fosforilação , Ligação Proteica , Proteína Fosfatase 1 , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Subunidades Proteicas , Saccharomyces cerevisiae/genética , Deleção de Sequência , Técnicas do Sistema de Duplo-Híbrido
3.
Biochemistry ; 40(25): 7410-20, 2001 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-11412094

RESUMO

Protein phosphatase type 1 (PP1) is a major Ser/Thr protein phosphatase that is involved in many cellular processes. The activity of PP1 is controlled by regulatory subunits, many of which are thought to bind to a hydrophobic groove in PP1 via a short consensus sequence termed the V/IXF motif. To test this hypothesis, 11 variants of yeast PP1 (Glc7) were constructed in which one or more of the residues comprising the groove were changed to alanine. These variants were tested for their biological activity in vivo, for their biochemical activity in vitro, and for their ability to associate with three PP1 binding proteins. Five variants are unable to complement the essential function of PP1 in vivo although they are catalytically active in vitro. Many of the mutants are deficient in binding two V/IXF-containing subunits, Gac1 and Reg1, which regulate glycogen accumulation and glucose repression, respectively, but all retain the ability to associate with Sds22, a regulatory subunit that lacks this motif. The subcellular locations at which PP1 normally accumulates (bud neck, nucleolus, spindle pole body) were not occupied by one PP1 variant. Additionally, we provide evidence that mutations in the hydrophobic groove of PP1 affect substrate specificity. Together, these results demonstrate the importance of the hydrophobic groove for the interaction with regulatory subunits, for the proper subcellular localization of PP1 and for the substrate specificity of PP1.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Nucleares , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe , Substituição de Aminoácidos/genética , Sítios de Ligação/genética , Catálise , Proteínas de Ciclo Celular , Ativação Enzimática/genética , Proteínas Fúngicas/biossíntese , Vetores Genéticos/síntese química , Vetores Genéticos/metabolismo , Humanos , Fosfoproteínas Fosfatases/biossíntese , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/enzimologia , Especificidade por Substrato/genética
4.
J Bacteriol ; 183(3): 821-9, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11208778

RESUMO

A yeast glc7-1 mutant expressing a variant of protein phosphatase type 1 fails to accumulate glycogen. This defect is associated with hyperphosphorylated and inactive glycogen synthase, consistent with Glc7p acting directly to dephosphorylate and activate glycogen synthase. To characterize the glycogen synthesis defect of this mutant in more detail, we isolated 26 pseudorevertants of the glc7-1 mutant. All pseudoreversion events were due to missense mutations in GSY2, the gene encoding the major isoform of glycogen synthase. A majority of the mutations responsible for the suppression were in the 3' end of the gene, corresponding to the phosphorylated COOH terminus of Gsy2p. Phosphorylation of the mutant proteins was reduced, suggesting that they are poor substrates for glycogen synthase kinases. Suppressor mutations outside this domain did not decrease the phosphorylation of the resulting proteins, indicating that these proteins are immune to the regulatory effects of phosphorylation. Since no growth defect has been observed for strains with altered glycogen levels, the relative levels of fitness of GSY2 mutants that fail to accumulate glycogen and that hyperaccumulate glycogen were assayed by cocultivation experiments. A wild-type strain outcompeted both hypo- and hyperaccumulating strains, suggesting that glycogen levels contribute substantially to the fitness of yeast.


Assuntos
Proteínas Fúngicas/genética , Glicogênio Sintase/genética , Glicogênio/metabolismo , Mutação , Fosfoproteínas Fosfatases/genética , Saccharomyces cerevisiae/genética , Supressão Genética , Sequência de Aminoácidos , Clonagem Molecular , Dados de Sequência Molecular , Fosfatos/metabolismo , Saccharomyces cerevisiae/enzimologia , Análise de Sequência de DNA
5.
Cell ; 102(3): 279-91, 2000 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-10975519

RESUMO

Phosphorylation of histone H3 at serine 10 occurs during mitosis and meiosis in a wide range of eukaryotes and has been shown to be required for proper chromosome transmission in Tetrahymena. Here we report that Ipl1/aurora kinase and its genetically interacting phosphatase, Glc7/PP1, are responsible for the balance of H3 phosphorylation during mitosis in Saccharomyces cerevisiae and Caenorhabditis elegans. In these models, both enzymes are required for H3 phosphorylation and chromosome segregation, although a causal link between the two processes has not been demonstrated. Deregulation of human aurora kinases has been implicated in oncogenesis as a consequence of chromosome missegregation. Our findings reveal an enzyme system that regulates chromosome dynamics and controls histone phosphorylation that is conserved among diverse eukaryotes.


Assuntos
Caenorhabditis elegans/citologia , Proteínas Fúngicas/metabolismo , Histonas/metabolismo , Mitose , Fosfoproteínas Fosfatases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/citologia , Animais , Aurora Quinases , Caenorhabditis elegans/metabolismo , Genoma , Proteínas de Helminto/metabolismo , Fenótipo , Fosforilação , RNA Antissenso , RNA Interferente Pequeno , Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Especificidade da Espécie
7.
Genetics ; 155(1): 69-83, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10790385

RESUMO

GLC7 encodes an essential serine/threonine protein type I phosphatase in Saccharomyces cerevisiae. Three other phosphatases (Ppz1p, Ppz2p, and Sal6p) share >59% identity in their catalytic region with Glc7p. ppz1 ppz2 null mutants have no apparent growth defect on rich media. However, null alleles of PPZ1 and PPZ2, in combination with mutant alleles of GLC7, confer a range of growth defects varying from slow growth to lethality. These results indicate that Glc7p, Ppz1p, and Ppz2p may have overlapping functions. To determine if this overlap extends to interaction with targeting subunits, Glc7p-binding proteins were tested for interaction in the two-hybrid system with the functional catalytic domain of Ppz1p. Ppz1p interacts strongly with a number of Glc7p regulatory subunits, including Glc8p, a protein that shares homology with mammalian PP1 inhibitor I2. Genetic data suggest that Glc8p positively affects both Glc7p and Ppz1p functions. Together our data suggest that Ppz1p and Ppz2p may have overlapping functions with Glc7p and that all three phosphatases may act through common regulatory proteins.


Assuntos
Proteínas Fúngicas/genética , Fosfoproteínas Fosfatases/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Transporte/genética , Domínio Catalítico , Proteínas do Citoesqueleto , Proteínas Fúngicas/metabolismo , Teste de Complementação Genética , Mutagênese , Fenótipo , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 1 , Técnicas do Sistema de Duplo-Híbrido
8.
Mol Gen Genet ; 263(3): 411-22, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10821175

RESUMO

The REG1 gene encodes a regulatory subunit of the type-1 protein phosphatase (PP1) G1c7 in Saccharomyces cerevisiae, which directs the catalytic subunit to substrates involved in glucose repression. Loss of REG1 relieves glucose repression of many genes, including the MAL structural genes that encode the maltose fermentation enzymes. In this report, we explore the role of Reglp and its homolog Reg2p in glucose-induced inactivation of maltose permease. Glucose stimulates the proteolysis of maltose permease and very rapid loss of maltose transport activity - more rapid than can be explained by loss of the permease protein alone. In a reg1delta strain we observe a significantly reduced rate of glucose-induced proteolysis of maltose permease, and the rapid loss of maltose transport activity does not occur. Instead, surprisingly, the slow rate of proteolysis of maltose permease is accompanied by an increase in maltose transport activity. Loss of Reg2p modestly reduces the rates of both glucose-induced proteolysis of maltose permease and inactivation of maltose transport activity. Overexpression of Reg2p in a reg1delta strain suppresses the effect on maltose permease proteolysis and partially restores the inactivation of maltose transport activity, but does not affect the insensitivity of MAL gene expression to repression by glucose observed in this strain. Thus, protein phosphatase type-1 (Glc7p-Reglp and Glc7p-Reg2p) plays a role in transduction of the glucose signal during glucose-induced proteolysis of maltose permease, but only Glc7p-Reglp is involved in glucose-induced inactivation of maltose transport activity and glucose repression of MAL gene expression. Overexpression of REG1 partially restores proteolysis of maltose permease in a grr1delta strain, which lacks glucose signaling, but does not rescue rapid inactivation of maltose transport activity or sensitivity to glucose repression. A model for the role of Reglp and Reg2p in glucose signaling pathways is discussed. We also uncovered a previously unrecognized G2/M delay in the grr1delta but not the reg1delta strains, and this delay is suppressed by REG1 overexpression. The G1/S delay seen in grr1delta mutants is slightly suppressed as well, but REG1 overexpression does not suppress other grr1delta phenotypes such as insensitivity to glucose repression.


Assuntos
Proteínas de Transporte , Glucose/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Transdução de Sinais , Ubiquitina-Proteína Ligases , Western Blotting , Ciclo Celular , Ativação Enzimática , Proteínas F-Box , Citometria de Fluxo , Proteínas Fúngicas/fisiologia , Genótipo , Cinética , Maltose/metabolismo , Modelos Biológicos , Proteínas de Transporte de Monossacarídeos , Fenótipo , Fosfoproteínas Fosfatases/genética , Fosforilação , Fatores de Tempo , alfa-Glucosidases/metabolismo
9.
J Biol Chem ; 275(25): 18670-5, 2000 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-10748125

RESUMO

Inhibitor-1 (I-1) and inhibitor-2 (I-2) selectively inhibit type 1 protein serine/threonine phosphatases (PP1). To define the molecular basis for PP1 inhibition by I-1 and I-2 charged-to-alanine substitutions in the Saccharomyces cerevisiae, PP1 catalytic subunit (GLC7), were analyzed. Two PP1 mutants, E53A/E55A and K165A/E166A/K167A, showed reduced sensitivity to I-2 when compared with wild-type PP1. Both mutants were effectively inhibited by I-1. Two-hybrid analysis and coprecipitation or pull-down assays established that wild-type and mutant PP1 catalytic subunits bound I-2 in an identical manner and suggested a role for the mutated amino acids in enzyme inhibition. Inhibition of wild-type and mutant PP1 enzymes by full-length I-2(1-204), I-2(1-114), and I-2(36-204) indicated that the mutant enzymes were impaired in their interaction with the N-terminal 35 amino acids of I-2. Site-directed mutagenesis of amino acids near the N terminus of I-2 and competition for PP1 binding by a synthetic peptide encompassing an I-2 N-terminal sequence suggested that a PP1 domain composed of amino acids Glu-53, Glu-55, Asp-165, Glu-166, and Lys-167 interacts with the N terminus of I-2. This defined a novel regulatory interaction between I-2 and PP1 that determines I-2 potency and perhaps selectivity as a PP1 inhibitor.


Assuntos
Inibidores Enzimáticos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Domínio Catalítico , Primers do DNA , Modelos Químicos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Ligação Proteica , Proteína Fosfatase 1 , Saccharomyces cerevisiae/enzimologia , Homologia de Sequência de Aminoácidos
10.
J Cell Biol ; 149(1): 125-40, 2000 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-10747092

RESUMO

Protein phosphatase type I (PP1), encoded by the single essential gene GLC7 in Saccharomyces cerevisiae, functions in diverse cellular processes. To identify in vivo subcellular location(s) where these processes take place, we used a functional green fluorescent protein (GFP)-Glc7p fusion protein. Time-lapse fluorescence microscopy revealed GFP-Glc7p localizes predominantly in the nucleus throughout the mitotic cell cycle, with the highest concentrations in the nucleolus. GFP-Glc7p was also observed in a ring at the bud neck, which was dependent upon functional septins. Supporting a role for Glc7p in bud site selection, a glc7-129 mutant displayed a random budding pattern. In alpha-factor treated cells, GFP-Glc7p was located at the base of mating projections, again in a septin-dependent manner. At the start of anaphase, GFP-Glc7p accumulated at the spindle pole bodies and remained there until cytokinesis. After anaphase, GFP-Glc7p became concentrated in a ring that colocalized with the actomyosin ring. A GFP-Glc7-129 fusion was defective in localizing to the bud neck and SPBs. Together, these results identify sites of Glc7p function and suggest Glc7p activity is regulated through dynamic changes in its location.


Assuntos
Divisão Celular , Proteínas do Citoesqueleto , Proteínas Fúngicas/metabolismo , Mitose , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Actomiosina/metabolismo , Anáfase/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Divisão Celular/efeitos dos fármacos , Nucléolo Celular/enzimologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/enzimologia , Técnica Indireta de Fluorescência para Anticorpo , Proteínas Fúngicas/genética , Genes Fúngicos/genética , Genes Fúngicos/fisiologia , Fator de Acasalamento , Mitose/efeitos dos fármacos , Mutação/genética , Peptídeos/farmacologia , Fosfoproteínas Fosfatases/genética , Profilinas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/enzimologia , Fatores de Tempo
11.
Genes Dev ; 13(5): 517-22, 1999 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-10072380

RESUMO

A conditional allele of type 1 protein phosphatase (glc7-129) in Saccharomyces cerevisiae causes first cycle arrest in G2/M, characterized by cells with a short spindle and high H1 kinase activity. Point-of-execution experiments indicate Glc7p function is required in G2/M just before anaphase for the completion of mitosis. Loss of the spindle/kinetochore checkpoint in glc7-129 cells abolishes the G2/M cell cycle arrest with a concomitant increase in chromosome loss and reduced viability. These results support a role for Glc7p in regulating kinetochore attachment to the spindle, an event monitored by the spindle/kinetochore checkpoint.


Assuntos
Proteínas Fúngicas/fisiologia , Cinetocoros/fisiologia , Fosfoproteínas Fosfatases/fisiologia , Saccharomyces cerevisiae/enzimologia , Transdução de Sinais , Fuso Acromático/fisiologia , Cromossomos Fúngicos , Proteínas Fúngicas/genética , Fase G2 , Mitose , Fosfoproteínas Fosfatases/genética , Saccharomyces cerevisiae/genética
12.
Genetics ; 145(3): 615-26, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9055072

RESUMO

Protein phosphatase type 1, encoded by GLC7 in Saccharomyces cerevisiae, is an essential serine/threonine phosphatase implicated in the regulation of a diverse array of physiological functions. We constructed and examined 20 mutant alleles of GLC7 in which codons encoding clusters of charged residues were changed to alanine codons. Three of 20 mutant alleles alter residues in the active site of the phosphatase and are unable to rescue the lethality of a glc7::LEU2 disruption. The 17 alleles that support growth confer a range of mutant traits including cell cycle arrest, 2-deoxyglucose resistance, altered levels of glycogen, sensitivity to high salt, and sporulation defects. For some traits, such as 2-deoxyglucose resistance and cell cycle arrest, the mutated residues map to specific regions of the protein whereas the mutated residues in glycogen-deficient mutants and sporulation-defective mutants are more widely distributed over the protein surface. Many mutants have complex phenotypes, each displaying a diverse range of defects. The wide range of phenotypes identified from the collection of mutant alleles is consistent with the hypothesis that Glc7p-binding proteins, which are thought to regulate the specificity of Glc7p, have overlapping binding sites on the surface of Glc7p. This could account for the high level of sequence conservation found among type 1 protein phosphatases from different species.


Assuntos
Proteínas Fúngicas/genética , Fosfoproteínas Fosfatases/genética , Saccharomyces cerevisiae/enzimologia , Alanina/genética , Alelos , Genes Letais , Glucose/metabolismo , Glicogênio/biossíntese , Mutagênese , Esporos Fúngicos
13.
Mol Cell Biol ; 16(6): 2922-31, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8649403

RESUMO

The GLC7 gene of Saccharomyces cerevisiae encodes the catalytic subunit of type 1 protein phosphatase (PP1) and is essential for cell growth. We have isolated a previously uncharacterized gene, REG2, on the basis of its ability to interact with Glc7p in the two-hybrid system. Reg2p interacts with Glc7p in vivo, and epitope-tagged derivatives of Reg2p and Glc7p coimmunoprecipitate from cell extracts. The predicted protein product of the REG2 gene is similar to Reg1p, a protein believed to direct PP1 activity in the glucose repression pathway. Mutants with a deletion of reg1 display a mild slow-growth defect, while reg2 mutants exhibit a wild-type phenotype. However, mutants with deletions of both reg1 and reg2 exhibit a severe growth defect. Overexpression of REG2 complements the slow-growth defect of a reg1 mutant but does not complement defects in glycogen accumulation or glucose repression, two traits also associated with a reg1 deletion. These results indicate that REG1 has a unique role in the glucose repression pathway but acts together with REG2 to regulate some as yet uncharacterized function important for growth. The growth defect of a reg1 reg2 double mutant is alleviated by a loss-of-function mutation in the SNF1-encoded protein kinase. The snf1 mutation also suppresses the glucose repression defects of reg1. Together, our data are consistent with a model in which Reg1p and Reg2p control the activity of PP1 toward substrates that are phosphorylated by the Snf1p kinase.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Fosfoproteínas Fosfatases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Divisão Celular/genética , Divisão Celular/fisiologia , Primers do DNA/genética , DNA Fúngico/genética , Glucose/metabolismo , Glicogênio/metabolismo , Dados de Sequência Molecular , Mutação , Fenótipo , Fosfoproteínas Fosfatases/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos
14.
Genetics ; 143(1): 57-66, 1996 May.
Artigo em Inglês | MEDLINE | ID: mdl-8722762

RESUMO

Pho85, a protein kinase with significant homology to the cyclin-dependent kinase, Cdc28, has been shown to function in repression of transcription of acid phosphatase (APase, encoded by PHO5) in high phosphate (Pi) medium, as well as in regulation of the cell cycle at G1/S. We described several unique phenotypes associated with the deletion of the PHO85 gene including growth defects on a variety of carbon sources and hyperaccumulation of glycogen in rich medium high in Pi. Hyperaccumulation of glycogen in the pho85 strains is independent of other APase regulatory molecules and is not signaled through Snfl kinase. However, constitutive activation of cAPK suppresses the hyperaccumulation of glycogen in a pho85 mutant. Mutation of the type-1 protein phosphatase encoded by GLC7 only partially suppresses the glycogen phenotype of the pho85 mutant. Additionally, strains containing a deletion of the PHO85 gene show an increase in expression of GSY2. This work provides evidence that Pho85 has functions in addition to transcriptional regulation of APase and cell-cycle progression including the regulation of glycogen levels in the cell and may provide a link between the nutritional state of the cell and these growth related responses.


Assuntos
Quinases Ciclina-Dependentes/genética , Deleção de Genes , Genes Fúngicos , Glicogênio/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fosfatase Ácida/biossíntese , Fosfatase Ácida/genética , Meios de Cultura , Regulação Fúngica da Expressão Gênica , Genótipo , Heterozigoto , Mutagênese , Fosfatos/metabolismo , Plasmídeos , Proteínas Repressoras/genética , Mapeamento por Restrição , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transcrição Gênica
15.
J Cell Biol ; 131(6 Pt 1): 1483-93, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8522605

RESUMO

Many actin-binding proteins affect filament assembly in vitro and localize with actin in vivo, but how their molecular actions contribute to filament assembly in vivo is not understood well. We report here that capping protein (CP) and fimbrin are both important for actin filament assembly in vivo in Saccharomyces cerevisiae, based on finding decreased actin filament assembly in CP and fimbrin mutants. We have also identified mutations in actin that enhance the CP phenotype and find that those mutants also have decreased actin filament assembly in vivo. In vitro, actin purified from some of these mutants is defective in polymerization or binding fimbrin. These findings support the conclusion that CP acts to stabilize actin filaments in vivo. This conclusion is particularly remarkable because it is the opposite of the conclusion drawn from recent studies in Dictyostelium (Hug, C., P.Y. Jay, I. Reddy, J.G. McNally, P.C. Bridgman, E.L. Elson, and J.A. Cooper. 1995. Cell. 81:591-600). In addition, we find that the unpolymerized pool of actin in yeast is very small relative to that found in higher cells, which suggests that actin filament assembly is less dynamic in yeast than higher cells.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/fisiologia , Proteínas do Citoesqueleto , Glicoproteínas de Membrana/fisiologia , Proteínas de Membrana , Proteínas dos Microfilamentos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Actinas/genética , Actinas/ultraestrutura , Alelos , Animais , Dictyostelium/fisiologia , Proteínas Fúngicas/fisiologia , Mutação/fisiologia , Plasmídeos , Conformação Proteica , Saccharomyces cerevisiae/química
16.
Mol Cell Biol ; 15(7): 3767-76, 1995 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-7791784

RESUMO

The Saccharomyces cerevisiae GLC7 gene encodes the catalytic subunit of type 1 protein phosphatase (PP1) and is required for cell growth. A cold-sensitive glc7 mutant (glc7Y170) arrests in G2/M but remains viable at the restrictive temperature. In an effort to identify additional gene products that function in concert with PP1 to regulate growth, we isolated a mutation (gpp1) that exacerbated the growth phenotype of the glc7Y170 mutation, resulting in rapid death of the double mutant at the nonpermissive temperature. We identified an additional gene, EGP1, as an extra-copy suppressor of the glc7Y170 gpp1-1 double mutant. The nucleotide sequence of EGP1 predicts a leucine-rich repeat protein that is similar to Sds22, a protein from the fission yeast Schizosaccharomyces pombe that positively modulates PP1. EGP1 is essential for cell growth but becomes dispensable upon overexpression of the GLC7 gene. Egp1 and PP1 directly interact, as assayed by coimmunoprecipitation. These results suggest that Egp1 functions as a positive modulator of PP1 in the growth control of S. cerevisiae.


Assuntos
Genes Fúngicos/genética , Genes Reguladores/genética , Proteínas Nucleares , Fosfoproteínas Fosfatases/metabolismo , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe , Sequência de Aminoácidos , Sequência de Bases , Ciclo Celular/genética , Proteínas de Ciclo Celular , Núcleo Celular/patologia , Clonagem Molecular , Imunofluorescência , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Regulação Fúngica da Expressão Gênica , Genes Letais/genética , Microtúbulos/patologia , Dados de Sequência Molecular , Mutagênese , Fosfoproteínas Fosfatases/isolamento & purificação , Testes de Precipitina , Proteínas Repressoras/isolamento & purificação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
17.
J Cell Biol ; 125(1): 143-58, 1994 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8138567

RESUMO

JNM1, a novel gene on chromosome XIII in the yeast Saccharomyces cerevisiae, is required for proper nuclear migration. jnm1 null mutants have a temperature-dependent defect in nuclear migration and an accompanying alteration in astral microtubules. At 30 degrees C, a significant proportion of the mitotic spindles is not properly located at the neck between the mother cell and the bud. This defect is more severe at low temperature. At 11 degrees C, 60% of the cells accumulate with large buds, most of which have two DAPI staining regions in the mother cell. Although mitosis is delayed and nuclear migration is defective in jnm1 mutant, we rarely observe more than two nuclei in a cell, nor do we frequently observe anuclear cells. No loss of viability is observed at 11 degrees C and cells continue to grow exponentially with increased doubling time. At low temperature the large budded cells of jnm1 mutants exhibit extremely long astral microtubules that often wind around the periphery of the cell. jnm1 mutants are not defective in chromosome segregation during mitosis, as assayed by the rate of chromosome loss, or nuclear migration during conjugation, as assayed by the rate of mating and cytoduction. The phenotype of a jnm1 mutant is strikingly similar to that for mutants in the dynein heavy chain gene (Eshel, D., L. A. Urrestarazu, S. Vissers, J.-C. Jauniaux, J. C. van Vliet-Reedijk, R. J. Plants, and I. R. Gibbons. 1993. Proc. Natl. Acad. Sci. USA. 90:11172-11176; Li, Y. Y., E. Yeh, T. Hays, and K. Bloom. 1993. Proc. Natl. Acad. Sci. USA. 90:10096-10100). The JNM1 gene product is predicted to encode a 44-kD protein containing three coiled coil domains. A JNM1:lacZ gene fusion is able to complement the cold sensitivity and microtubule phenotype of a jnm1 deletion strain. This hybrid protein localizes to a single spot in the cell, most often near the spindle pole body in unbudded cells and in the bud in large budded cells. Together these results point to a specific role for Jnm1p in spindle migration, possibly as a subunit or accessory protein for yeast dynein.


Assuntos
Núcleo Celular/fisiologia , Proteínas Fúngicas/fisiologia , Genes Fúngicos , Mitose , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fuso Acromático/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Clonagem Molecular , Primers do DNA/química , Proteínas Associadas aos Microtúbulos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Temperatura
18.
Mol Cell Biol ; 14(2): 896-905, 1994 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8289829

RESUMO

Loss-of-function gac1 mutants of Saccharomyces cerevisiae fail to accumulate normal levels of glycogen because of low glycogen synthase activity. Increased dosage of GAC1 results in increased activity of glycogen synthase and a corresponding hyperaccumulation of glycogen. The glycogen accumulation phenotype of gac1 is similar to that of glc7-1, a type 1 protein phosphatase mutant. We have partially characterized the GAC1 gene product (Gac1p) and show that levels of Gac1p increase during growth with the same kinetics as glycogen accumulation. Gac1p is phosphorylated in vivo and is hyperphosphorylated in a glc7-1 mutant. Gac1p and the type 1 protein phosphatase directly interact in vitro, as assayed by coimmunoprecipitation, and in vivo, as determined by the dihybrid assay described elsewhere (S. Fields and O.-k. Song, Nature [London] 340:245-246, 1989). The interaction between Gac1p and the glc7-1-encoded form of the type 1 protein phosphatase is defective, as assayed by either immunoprecipitation or the dihybrid assay. Increased dosage of GAC1 partially suppresses the glycogen defect of glc7-1. Collectively, our data support the hypotheses that GAC1 encodes a regulatory subunit of type 1 protein phosphatase and that the glycogen accumulation defect of glc7-1 is due at least in part to the inability of the mutant phosphatase to interact with its regulatory subunit.


Assuntos
Proteínas Fúngicas/metabolismo , Mutação , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Sequência de Bases , Cruzamentos Genéticos , Primers do DNA , Proteínas Fúngicas/biossíntese , Expressão Gênica , Isoenzimas/biossíntese , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Dados de Sequência Molecular , Fosfoproteínas Fosfatases/biossíntese , Fosfoproteínas Fosfatases/genética , Plasmídeos , Reação em Cadeia da Polimerase , Proteína Fosfatase 1 , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , beta-Galactosidase/biossíntese , beta-Galactosidase/metabolismo
19.
FEBS Lett ; 325(3): 191-5, 1993 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-8391474

RESUMO

The high affinity cAMP phosphodiesterase, encoded by PDE2, is an important component of the cAMP-dependent protein kinase signaling system in Saccharomyces cerevisiae. An unexpected phenotype of pde2 mutants is sensitivity to external cAMP. This trait has been found independently for rca1 mutants and has been used to monitor the effects of cAMP on several biological processes. We demonstrate here that RCA1 is identical to PDE2. Further analysis of the phenotype of pde2 deletions reveal that exogenously added cAMP results in an increase in the internal level of cAMP. This increase slows down the rate of cell division by increasing the length of the G1 phase of the cell cycle and leads to increased cell volume. Also, cells with a disrupted PDE2 gene previously arrested by nutrient starvation rapidly lose thermotolerance when incubated with exogenous cAMP. From these observations we propose that a role of the PDE2-encoded phosphodiesterase may be to help insulate the internal cAMP pools from the external environment. This protective role might also be important in other eukaryotic organisms where cAMP is a key second messenger.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/genética , Genes Fúngicos , Saccharomyces cerevisiae/genética , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Alelos , AMP Cíclico/metabolismo , Fase G1 , Saccharomyces cerevisiae/enzimologia , Transdução de Sinais , Temperatura
20.
EMBO J ; 11(1): 87-96, 1992 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-1310938

RESUMO

Elevated dosage of the GAC1 gene from the yeast Saccharomyces cerevisiae causes hyperaccumulation of glycogen whereas a gene disruption of GAC1 results in reduced glycogen levels. Glycogen synthase is almost entirely in the active, glucose 6-phosphate-independent, form in cells with increased gene dosage of GAC1 whereas the enzyme is mostly in the inactive form in strains lacking GAC1. GAC1 encodes an 88 kDa protein that is similar to the regulatory subunit (RG1) of phosphoprotein phosphatase type 1 (PP-1) from skeletal muscle that targets PP-1 to glycogen particles. Taken together, these results suggest that GAC1 encodes a regulatory subunit of PP-1. As previously shown for glycogen phosphorylase (GPH1), GAC1 RNA accumulates concomitantly with the appearance of glycogen. A strain with a mutation in the regulatory subunit of the cAMP-dependent protein kinase (bcy1) fails to accumulate GPH1 and GAC1 RNA. These results point to coordinate regulation of enzymes involved in glycogen metabolism at the level of RNA accumulation and indicate that at least part of this control is exerted by the RAS-cAMP pathway.


Assuntos
Proteínas Fúngicas/genética , Regulação da Expressão Gênica , Glicogênio Sintase/metabolismo , Fosfoproteínas Fosfatases/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , AMP Cíclico/metabolismo , Ativação Enzimática , Glicogênio/metabolismo , Glicogênio Sintase/genética , Dados de Sequência Molecular , Proteínas Quinases/metabolismo , Proteína Fosfatase 1 , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...