Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 6039, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245995

RESUMO

Our understanding regarding the influence of intensive agricultural practices, including cover cropping and tillage, on communities of arbuscular mycorrhizal fungi (AMF) is lacking. This would prove to be an obstacle in the improvement of current maize (Zea mays L.) production. Therefore, using amplicon sequencing, we aimed to clarify how AMF communities and their diversity in maize roots vary under different cover cropping systems and two types of tillage (rotary and no tillage). Two kinds of cover crops (hairy vetch and brown mustard) and fallow treatments were established with rotary or no tillage in rotation with maize crops. Tillage and no tillage yielded a set of relatively common AMF operational taxonomic units (OTUs) in the maize crops, representing 78.3% of the total OTUs. The percentage of maize crop OTUs that were specific to only tillage and no tillage were 9.6% and 12.0%, respectively. We found that tillage system significantly altered the AMF communities in maize roots. However, the AMF communities of maize crops among cover cropping treatments did not vary considerably. Our findings indicate that compared with cover cropping, tillage may shape AMF communities in maize more strongly.


Assuntos
Micorrizas/genética , Zea mays/microbiologia , Agricultura , Produção Agrícola , Produtos Agrícolas , Micobioma , Raízes de Plantas , Análise de Sequência de DNA , Microbiologia do Solo , Triticum
2.
Microorganisms ; 8(2)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991824

RESUMO

Understanding the impact of phosphorus (P) addition on arbuscular mycorrhizal fungi (AMF) is crucial to understanding tomato (Solanum lycopersicum L.) P nutrition. However, it remains unknown how P fertilization is associated with the structure of AMF communities on tomato plants. Thus, we investigated whether levels of P fertilizer interacted with the colonization and structure of AMF in tomato roots in a field trial. In this study, we established three different amounts of P fertilizer treatments (0 kg ha-1, 50 kg ha-1, and 100 kg ha-1). We investigated AMF root colonization and community structure, as well as plant growth in tomatoes at seven weeks following transplantation. The structure of the AMF communities in the roots of tomato were determined by MiSeq amplicon sequencing. As expected, P fertilizer input enhanced the P uptake and plant biomass. In contrast, the P fertilizer level did not affect the AMF root colonization and diversity or the structure of the AMF communities in the tomato. However, we found a negative correlation between AMF colonization and richness in the roots of the tomato plants. Therefore, we need to investigate whether and how AMF communities and P fertilization develop more effective P management for tomato plants.

3.
PeerJ ; 7: e6403, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30775179

RESUMO

BACKGROUND: Understanding the role of communities of arbuscular mycorrhizal fungi (AMF) in agricultural systems is imperative for enhancing crop production. The key variables influencing change in AMF communities are the type of cover crop species or the type of subsequent host crop species. However, how maize and soybean performance is related to the diversity of AMF communities in cover cropping systems remains unclear. We therefore investigated which cover cropping or host identity is the most important factor in shaping AMF community structure in subsequent crop roots using an Illumina Miseq platform amplicon sequencing. METHODS: In this study, we established three cover crop systems (Italian ryegrass, hairy vetch, and brown mustard) or bare fallow prior to planting maize and soybean as cash crops. After cover cropping, we divided the cover crop experimental plots into two subsequent crop plots (maize and soybean) to understand which cover cropping or host crop identity is an important factor for determining the AMF communities and diversity both in maize and soybeans. RESULTS: We found that most of the operational taxonomic units (OTUs) in root samples were common in both maize and soybean, and the proportion of common generalists in this experiment for maize and soybean roots was 79.5% according to the multinomial species classification method (CLAM test). The proportion of OTUs specifically detected in only maize and soybean was 9.6% and 10.8%, respectively. Additionally, the cover cropping noticeably altered the AMF community structure in the maize and soybean roots. However, the differentiation of AMF communities between maize and soybean was not significantly different. DISCUSSION: Our results suggest cover cropping prior to planting maize and soybean may be a strong factor for shaping AMF community structure in subsequent maize and soybean roots rather than two host crop identities. Additionally, we could not determine the suitable rotational combination for cover crops and subsequent maize and soybean crops to improve the diversity of the AMF communities in their roots. However, our findings may have implications for understanding suitable rotational combinations between cover crops and subsequent cash crops and further research should investigate in-depth the benefit of AMF on cash crop performances in cover crop rotational systems.

4.
PeerJ ; 6: e4606, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29682413

RESUMO

BACKGROUND: Understanding diversity of arbuscular mycorrhizal fungi (AMF) is important for optimizing their role for phosphorus (P) nutrition of soybeans (Glycine max (L.) Merr.) in P-limited soils. However, it is not clear how soybean growth and P nutrition is related to AMF colonization and diversity of AMF communities in a continuous P-unfertilized cover cropping system. Thus, we investigated the impact of P-application and cover cropping on the interaction among AMF colonization, AMF diversity in soybean roots, soybean growth and P nutrition under a five-year P-unfertilized crop rotation. METHODS: In this study, we established three cover crop systems (wheat, red clover and oilseed rape) or bare fallow in rotation with soybean. The P-application rates before the seeding of soybeans were 52.5 and 157.5 kg ha-1 in 2014 and 2015, respectively. We measured AMF colonization in soybean roots, soybean growth parameters such as aboveground plant biomass, P uptake at the flowering stage and grain yields at the maturity stage in both years. AMF community structure in soybean roots was characterized by specific amplification of small subunit rDNA. RESULTS: The increase in the root colonization at the flowering stage was small as a result of P-application. Cover cropping did not affect the aboveground biomass and P uptake of soybean in both years, but the P-application had positive effects on the soybean performance such as plant P uptake, biomass and grain yield in 2015. AMF communities colonizing soybean roots were also significantly influenced by P-application throughout the two years. Moreover, the diversity of AMF communities in roots was significantly influenced by P-application and cover cropping in both years, and was positively correlated with the soybean biomass, P uptake and grain yield throughout the two years. DISCUSSION: Our results indicated that P-application rather than cover cropping may be a key factor for improving soybean growth performance with respect to AMF diversity in P-limited cover cropping systems. Additionally, AMF diversity in roots can potentially contribute to soybean P nutrition even in the P-fertilized cover crop rotational system. Therefore, further investigation into the interaction of AMF diversity, P-application and cover cropping is required for the development of more effective P management practices on soybean growth performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA