Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000598

RESUMO

Insects are of great interest as novel sources of alternative proteins and biologically active compounds, primarily anticancer agents. Protein-rich insect larval hemolymph is a prospective candidate for pharmaceutical and food industry-related research. In this study, selected biochemical properties and cell toxicity of larval hemolymph from two mealworm species, Tenebrio molitor and Zophobas morio, were analyzed. Total proteins and carbohydrates, antioxidant capacity, and the level of lipid peroxidation were determined. Human cancer (U-87) and normometabolic (MRC-5) cells were treated with different concentrations of larval hemolymph proteins, and the effects on cell viability were assayed 24, 48, and 72 h after treatments. Z. morio hemolymph was shown to be richer in total proteins, showing a higher antioxidant capacity and lipid peroxidation level than T. molitor hemolymph, which was richer in total carbohydrates. Cytotoxicity assays showed that T. molitor and Z. morio hemolymphs differently affect the viability of U-87 and MRC-5 cells in cell type-, dose-, and time-dependent manners. Hemolymph from both species was more cytotoxic to U-87 cells than to MRC-5 cells, which was particularly prominent after 48 h. Additionally, a more potent cytotoxic effect of Z. morio hemolymph was observed on both cell lines, likely due to its higher antioxidant capacity, compared to T. molitor hemolymph.


Assuntos
Antioxidantes , Hemolinfa , Larva , Tenebrio , Animais , Hemolinfa/metabolismo , Tenebrio/efeitos dos fármacos , Larva/efeitos dos fármacos , Humanos , Antioxidantes/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Proteínas de Insetos/metabolismo
2.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542071

RESUMO

During diapause, a state of temporarily arrested development, insects require low winter temperatures to suppress their metabolism, conserve energy stores and acquire cold hardiness. A warmer winter could, thus, reduce diapause incidence and duration in many species, prematurely deplete their energy reserves and compromise post-diapause fitness. In this study, we investigated the combined effects of thermal stress and the diapause program on the expression of selected genes involved in antioxidant defense and heat shock response in the European corn borer Ostrinia nubilalis. By using qRT-PCR, it has been shown that response to chronic heat stress is characterized by raised mRNA levels of grx and trx, two important genes of the antioxidant defense system, as well as of hsp70 and, somewhat, of hsp90, two major heat shock response proteins. On the other hand, the expression of hsc70, hsp20.4 and hsp20.1 was discontinuous in the latter part of diapause, or was strongly controlled by the diapause program and refractory to heat stress, as was the case for mtn and fer, genes encoding two metal storage proteins crucial for metal ion homeostasis. This is the first time that the effects of high winter temperatures have been assessed on cold-hardy diapausing larvae and pupae of this important corn pest.


Assuntos
Diapausa , Mariposas , Animais , Antioxidantes/metabolismo , Mariposas/metabolismo , Larva/metabolismo , Diapausa/genética , Resposta ao Choque Térmico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...