Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Imaging ; 10(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38786570

RESUMO

Hyperfluorescence (HF) and reduced autofluorescence (RA) are important biomarkers in fundus autofluorescence images (FAF) for the assessment of health of the retinal pigment epithelium (RPE), an important indicator of disease progression in geographic atrophy (GA) or central serous chorioretinopathy (CSCR). Autofluorescence images have been annotated by human raters, but distinguishing biomarkers (whether signals are increased or decreased) from the normal background proves challenging, with borders being particularly open to interpretation. Consequently, significant variations emerge among different graders, and even within the same grader during repeated annotations. Tests on in-house FAF data show that even highly skilled medical experts, despite previously discussing and settling on precise annotation guidelines, reach a pair-wise agreement measured in a Dice score of no more than 63-80% for HF segmentations and only 14-52% for RA. The data further show that the agreement of our primary annotation expert with herself is a 72% Dice score for HF and 51% for RA. Given these numbers, the task of automated HF and RA segmentation cannot simply be refined to the improvement in a segmentation score. Instead, we propose the use of a segmentation ensemble. Learning from images with a single annotation, the ensemble reaches expert-like performance with an agreement of a 64-81% Dice score for HF and 21-41% for RA with all our experts. In addition, utilizing the mean predictions of the ensemble networks and their variance, we devise ternary segmentations where FAF image areas are labeled either as confident background, confident HF, or potential HF, ensuring that predictions are reliable where they are confident (97% Precision), while detecting all instances of HF (99% Recall) annotated by all experts.

2.
Diagnostics (Basel) ; 12(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892493

RESUMO

Optical coherence tomography (OCT) and fundus autofluorescence (FAF) are important imaging modalities for the assessment and prognosis of central serous chorioretinopathy (CSCR). However, setting the findings from both into spatial and temporal contexts as desirable for disease analysis remains a challenge due to both modalities being captured in different perspectives: sparse three-dimensional (3D) cross sections for OCT and two-dimensional (2D) en face images for FAF. To bridge this gap, we propose a visualisation pipeline capable of projecting OCT labels to en face image modalities such as FAF. By mapping OCT B-scans onto the accompanying en face infrared (IR) image and then registering the IR image onto the FAF image by a neural network, we can directly compare OCT labels to other labels in the en face plane. We also present a U-Net inspired segmentation model to predict segmentations in unlabeled OCTs. Evaluations show that both our networks achieve high precision (0.853 Dice score and 0.913 Area under Curve). Furthermore, medical analysis performed on exemplary, chronologically arranged CSCR progressions of 12 patients visualized with our pipeline indicates that, on CSCR, two patterns emerge: subretinal fluid (SRF) in OCT preceding hyperfluorescence (HF) in FAF and vice versa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...