Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 415(26): 6375-6387, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37714973

RESUMO

Monitoring a synthesis reaction in real time could allow not only the detection of the intermediates involved in the synthesis, to better understand its mechanisms, but also the impurities. Spectroscopic methods could be performed but are not so performant when analyzing complex mixtures and could require specific properties for the detection of the molecules of interest, the presence of a chromophore moiety for example. Mass spectrometry (MS) may overcome these limitations and is able to reach the accuracy and sensitivity required to efficiently detect, quantify, identify, and characterize the reagents and species produced during the synthesis. This is why the hyphenation of a microreactor with MS has already allowed synthesis processes to be monitored, but most of the time it targets a specific reaction or compounds and involves solvents compatible with MS. In this study, a universal setup for the hyphenation of a microreactor with MS and based on two valves has been developed. This two-valve setup has proven itself for the analysis of molecules of different nature and hydrophilicity, soluble in a large number of solvents even in non-MS-compatible ones. The developed setup evidenced a good repeatability and a linear response for the detection of the studied compounds. In addition, the dilution step included in the two-valve setup allows the MS monitoring of compounds initially synthesized at different concentrations. Finally, it was successfully used to study an amination reaction allowing the detection of the reaction products in 4 min with good repeatability as RSD values of MS signals were lower than 17%.

2.
Chemistry ; 29(56): e202301666, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37431686

RESUMO

Amine derivatives, including aniline and allylic amines, can be formed in a single-step process from benzene and an ammonia plasma in a microreactor. Different process parameters such as temperature, residence time, and plasma power were evaluated to improve the reaction yield and its selectivity toward aminated products and avoid hydrogenated or oligomerized products. In parallel, simulation studies of the process have been carried out to propose a global mechanism and gain a better understanding of the influence of the different process parameters. The exploration of diverse related alkenes showed that the double bonds, conjugation, and aromatization influenced the amination mechanism. Benzene was the best reactant for amination based on the lifetime of radical intermediates. Under optimized conditions, benzene was aminated in the absence of catalyst with a yield of 3.8 % and a selectivity of 49 % in various amino compounds.

3.
Chem Commun (Camb) ; 59(28): 4213-4216, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36939296

RESUMO

Trifluoromethyl N,N-aminals are important precursors allowing access to fluorinated building blocks. In this work, the direct synthesis of trifluoromethyl N,N-aminals from nitrogen containing heterocycles is reported using argon plasma in a continuous flow microreactor without any additives or metal catalysts. Their transformation to N-trifluoroethyl amines is also reported.

4.
Chem Commun (Camb) ; 58(52): 7281-7284, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35678143

RESUMO

The direct N-acylation of amines by esters in a microreactor is described using argon plasma, thereby producing amides in good to excellent yields.


Assuntos
Aminas , Ésteres , Acilação , Amidas
5.
ACS Appl Mater Interfaces ; 13(45): 54439-54446, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34738782

RESUMO

Stimuli-responsive liquid crystal elastomers (LCEs), which exhibit sophisticated and versatile shape variations and functions upon stimulations, have constantly interested material science researchers. To date, many challenges still exist in scaling up orientated LCEs with sophisticated physical shapes and multi-functions. Herein, LCEs with various customizable conventional and exotic three-dimensional (3D) shapes and with sizes larger than those previously reported have been prepared by combining magnetic field alignment and soft lithography technology. These LCEs have film, cylinder, ellipsoid, hemispheroid, tube, pyramid, triangle and rectangle frame, grid pattern, cubic frame, and spring shapes. Meanwhile, diversified deformation behaviors such as contraction, expansion, bending, and twisting have been achieved by effectively controlling the alignment directions. Finally, the LCE actuator with hemispheroid shape has been explored for its possible applications in dynamic Braille displays or lenses with adjustable focal length. The simple strategy reported here provides a convenient way to customize multimorphological large-size 3D LCE actuators and their stimuli-responsive deformations. These systems will considerably enlarge the potential applications of LCEs and benefit the development of LCE soft robots and the future special bionic systems.

6.
Polymers (Basel) ; 13(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200744

RESUMO

In biomaterials and biotechnology, coatings loaded with bioactive agents are used to trigger biological responses by acting as drug release platforms and modulating surface properties. In this work, direct deposition of poly(acrylic acid) coatings containing various agents, such as dyes, fluorescent molecules, was achieved by aerosol-assisted open-air plasma. Using an original precursors injection strategy, an acrylic acid aerosol was loaded with an aqueous aerosol and deposited on silicon wafers. Results clearly showed that agents dissolved in the aqueous aerosol were successfully entrapped in the final coating. The effect of aerosols concentration, flow rate, and treatment time, on the coating morphology and the amount of entrapped agents, was also investigated. It was demonstrated that this process has the potential to entrap a tunable amount of any sensible water-soluble agent without altering its activity. To the best of our knowledge, this is the first time that the loading of an aqueous aerosol in coatings deposited by plasma from a liquid aerosol precursor is reported. This innovative approach complements plasma deposition of coatings loaded with bioactive agents from aqueous aerosols with the use of non-volatile liquid precursors.

7.
Materials (Basel) ; 13(23)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297468

RESUMO

The flow regime inside the channel of 3D printed microreactors is defined by the surface properties of the channel walls. Polylactide (PLA) and acrylonitrile/butadiene/styrene (ABS) are two polymers that are the most common in additive manufacturing using fused filament fabrication, commonly known as "3D printing". With the aim of developing new materials for the 3D printing of microreactors whose channel surface hydrophobicity could be modified, PLA and ABS were blended with cheaper and widely used polymers-high-density polyethylene (PE-HD) and low-density polyethylene (PE-LD). Polymer blend surfaces were treated with inductively coupled plasma (ICP) and coated by fluorocarbon-based material (CFx) plasma deposition treatment in order to modify surface hydrophobicity. It has been shown that the modification of surface morphology of PLA polymer blends can be achieved by ICP etching and CFx coating, while this was not possible for ABS polymer blends under the conducted treatment conditions. The treated surface of PLA/PE-HD 90/10 showed a contact angle of 121.6° which is 36° higher than the contact angle measured on the untreated surface. Surfaces that have achieved contact angles higher than 120° have an "island like" surface morphology. Samples with higher "islands" showed higher contact angles, that confirmed that the hydrophobicity also depends on the height of the "islands". Furthermore, it has been found that etching time significantly impacts the contact angle values and surface morphology of the PLA polymer blends, while the CFx coating time does not have significant impact on the surface properties.

8.
Macromol Rapid Commun ; 41(19): e2000385, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32812328

RESUMO

The research on soft actuators including liquid crystal elastomers (LCEs) becomes more and more appealing at a time when the expansion of artificial systems is blooming. Among the various LCE actuators, the bending deformation is often in the origin of many actuation modes. Here, a new strategy with plasma technology is developed to prepare single-layer main-chain LCEs with thermally actuated bending and contraction deformations. Two distinct reactions, plasma polymerization and plasma-induced photopolymerization, are used to polymerize in one step the nematic monomer mixture aligned by magnetic field. The plasma polymerization forms cross-linked but disoriented structures at the surface of the LCE film, while the plasma-induced photopolymerization produces aligned LCE structure in the bulk. The actuation behaviors (bending and/or contraction) of LCE films can be adjusted by plasma power, reaction time, and sample thickness. Soft robots like crawling walker and flower mimic are built by LCE films with bending actuation.


Assuntos
Cristais Líquidos , Robótica , Elastômeros , Campos Magnéticos , Polimerização
9.
Nanomaterials (Basel) ; 9(7)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31331018

RESUMO

Immobilization of gold nanoparticles (AuNPs) on the surface of zeolite has received a great interest due to Au@zeolite's unique characteristics and high performance for catalysis. In this work we studied the grafting of two different functional molecules; one having an amine group (3-aminopropyl)triethoxysilane (APTES) and the second having a thiol group (3-mercaptopropyl)trimethoxysilane (MPTES) on the surface of zeolite using the same wet chemistry method. The modified zeolite surfaces were characterized using zeta potential measurements; diffuse reflectance infrared fourier transform (DRIFT) and X-ray photoelectron spectroscopy (XPS). The results confirmed a successful deposition of both functional groups at the topmost surface of the zeolite. Furthermore; transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis) spectroscopy and XPS results clearly evidenced that APTES provided a better AuNPs immobilization than MPTES as a result of; (1) less active functions obtained after MPTES deposition, and (2) the better attaching ability of thiol to the gold surface.

10.
Lab Chip ; 19(17): 2866-2873, 2019 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-31309213

RESUMO

In the present work, gold based catalysts were synthesized and immobilized on the surface of cyclic olefin copolymer (COC) microreactors. The microreactors were subsequently applied in a homemade microfluidic system for synthesizing benzaldehyde by oxidation of benzyl alcohol in water medium. The Au nanoparticles (NPs) immobilized on the inner surface of the microchannel showed a very high selectivity (94%) for benzaldehyde, while zeolite NPs exhibited only an adsorption feature to this reaction. Moreover, the results showed that the AuNP catalytic activity was maintained for at least 9 hours. However, the obtained conversion with AuNPs was only 20%, indicating a relatively low productivity. In comparison, AuNPs assembled on the surface of zeolite NPs (AuNPs@zeolite) and immobilized in the microchannel showed the best catalytic performance, as the highest benzaldehyde selectivity (>99%) with a relatively high benzyl alcohol conversion of 42.4% was achieved under the same conditions. To the best of our knowledge, this is the first example demonstrating the use of AuNP or AuNP@zeolite catalysts in a microsystem performing such high selectivity for benzaldehyde in water medium.

11.
Biointerphases ; 9(2): 029013, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24985217

RESUMO

Environmental surfaces are increasingly recognized as important sources of transmission of hospital-acquired infections. The use of antibacterial surface coatings may constitute an effective solution to reduce the spread of contamination in healthcare settings, provided that they exhibit sufficient stability and a long-term antibacterial effect. In this study, silver-incorporated diamondlike carbon films (Ag-DLC) were prepared in a continuous, single-step plasma process using a hybrid, inductively coupled plasma reactor combined with a very-low-frequency sputtering setup. The average Ag concentration in the films, ranging from 0 to 2.4 at. %, was controlled by varying the sputtering bias on the silver target. The authors found that the activity of Escherichia coli was reduced by 2.5 orders of magnitude, compared with the control surface, after a 4-h contact with a 2.4 at. % Ag-DLC coating. The coatings displayed slow release kinetics, with a total silver ion release in the sub-ppb range after 4 h in solution, as measured by graphite furnace-atomic absorption spectroscopy. This was confirmed by Kirby-Bauer diffusion tests, which showed limited diffusion of biocidal silver with a localized antibacterial effect. As a slow and continuous release is mandatory to ensure a lasting antibacterial effect, the newly developed Ag-DLC coatings appears as promising materials for environmental hospital surfaces.


Assuntos
Antibacterianos/química , Carbono/química , Materiais Revestidos Biocompatíveis/química , Prata/química , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Diamante/química , Difusão , Escherichia coli/efeitos dos fármacos , Íons/química , Testes de Sensibilidade Microbiana , Propriedades de Superfície
12.
J Phys Chem B ; 115(34): 10228-38, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21770448

RESUMO

The ammonia plasma process was used for generating reactive groups, particularly primary amine functions on the surface of polyethylene (PE) films, to immobilize the enzyme trypsin. The attachment of the enzyme was achieved by directly applying an aqueous solution of trypsin to the plasma-activated surface or by using glutaraldehyde as a chemical linker. In both cases, the utilization of sodium cyanoborohydride efficiently stabilized the immobilization. The surfaces were analyzed by X-ray photoelectron spectroscopy (XPS) and enzymatic activity measurements. Active trypsin was successfully immobilized on the surface with a mean activity of 0.09 ± 0.02 U/cm(2). The study of the stability of the immobilized enzyme during repetitive assays showed that some activity could be maintained during several months. An original quantitative correlation between the immobilized enzyme activity and the XPS signal intensity of the S 2p electrons present in the sulfur-containing amino acid residues was evidenced.


Assuntos
Amônia/química , Enzimas Imobilizadas/metabolismo , Espectroscopia Fotoeletrônica , Gases em Plasma/química , Polietileno/química , Tripsina/química , Tripsina/metabolismo , Adsorção , Animais , Bovinos , Enzimas Imobilizadas/química , Glutaral/química , Reprodutibilidade dos Testes , Propriedades de Superfície
13.
ACS Appl Mater Interfaces ; 3(7): 2323-31, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21545130

RESUMO

Coatings are known to be one of the more suited strategies to tailor the interface between medical devices and the surrounding cells and tissues once implanted. The development of coatings and the optimization of their adhesion and stability are of major importance. In this work, the influence of plasma etching of the substrate on a plasma fluorocarbon ultrathin coating has been investigated with the aim of improving the stability and the corrosion properties of coated medical devices. The 316 L stainless steel interface was subjected to two different etching sequences prior to the plasma deposition. These plasma etchings, with H(2) and C(2)F(6) as gas precursors, modified the chemical composition and the thickness of the oxide layer and influenced the subsequent polymerization. The coating properties were evaluated using flat substrates submitted to deformation, aging into aqueous medium and corrosion tests. X-ray photoelectron spectroscopy (XPS), time of flight-secondary ion mass spectrometry (ToF-SIMS), ellipsometry, and atomic force microscopy (AFM) were performed to determine the effects of the deformation and the aging on the chemistry and morphology of the coated samples. Analyses showed that plasma etchings were essential to promote reproducible polymerization and film growth. However, the oxide layer thinning due to the etching lowered the corrosion resistance of the substrate and affected the stability of the interface. Still, the deformed samples did not exhibited adhesion and cohesion failure before and after the aging.


Assuntos
Fluorocarbonos/química , Aço Inoxidável , Teste de Materiais , Microscopia de Força Atômica , Espectrometria de Massa de Íon Secundário , Análise Espectral , Raios X
14.
Langmuir ; 23(23): 11554-61, 2007 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-17915893

RESUMO

The aim of this work was to test and to compare different methods reported in the literature to quantify amine and aldehyde functions on the surface of polyethylene (PE) films treated by ammonia plasma and to specify their stability against time. A low pressure ammonia plasma reactor was used to functionalize PE films with amine groups, which could be subsequently used for further immobilization of biomolecules. In order to determine the density of amine groups on the surface of treated films, various molecule probes and spectrophotometric analytical methods have been investigated. Two methods using (i) sulfosuccinimidyl 6-[3'-(2-pyridyldithio)-propionamido] hexanoate (sulfo-LC-SPDP) and (ii) 2-iminothiolane (ITL) associated with bicinchoninic acid (BCA) have been proved to be reliable and sensitive enough to estimate the surface concentration of primary amine functions. The amount of primary amino groups on the functionalized polyethylene films was found to be between 1.2 and 1.4 molecules/nm2. In a second step, the surface concentration of glutaraldehyde (GA), which is currently used as a spacer arm before immobilization of biomolecules, has been assessed: two methods were used to determine the surface density of available aldehyde functions, after the reaction of GA with the aminated polyethylene film. The concentration of GA was found to be in the same range as primary amine concentration. The influence of aging time on the density of available amino and aldehyde groups on the surfaces were evaluated under different storage conditions. The results showed that 50% of the initial density of primary amine functions remained available after storage during 6 days of the PE samples in PBS (pH 7.6) at 4 degrees C. In the case of aldehyde groups, the same percentage of the initial density (50%) remained active after storage in air at RT over a longer period, i.e., 15 days.


Assuntos
Aldeídos/análise , Aminas/análise , Amônia/química , Materiais Biocompatíveis/análise , Polietilenos/análise , Aldeídos/química , Aminas/química , Materiais Biocompatíveis/química , Glutaral/química , Concentração de Íons de Hidrogênio , Imidoésteres/química , Polietilenos/química , Piridinas/química , Quinolinas/química , Espectrofotometria , Succinatos/química , Propriedades de Superfície , Fatores de Tempo
15.
Langmuir ; 22(12): 5230-2, 2006 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-16732644

RESUMO

We describe a method based on plasma polymerization for the modification and control of the surface properties of poly(dimethylsiloxane) (PDMS) surfaces. By depositing plasma polymerized acrylic acid coatings on PDMS, we succeeded to fabricate stable (several days) hydrophilic and patterned hydrophobic/hydrophilic surfaces. We used this approach to generate direct and (for the first time in this material) double emulsions in PDMS microchannels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...