Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Therm Biol ; 100: 103045, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34503792

RESUMO

Uncertainty propagation analysis in the Fiala thermophysiological model is performed by the Monte Carlo Method. The uncertainties of the output quantities of the passive system, due to imported uncertainties in the coefficients of the control equations of the active system, caused by the variation of the experimental data, are computed. The developed and implemented in-house code is accordingly validated. The effect of the input uncertainties, in each of the four main responses (shivering, vasodilatation, vasoconstriction, sweating) of the active system, is separately examined by simulating the human exposure from neutral conditions to cold and hot environments. It is predicted that the maximum output uncertainties of the response mechanisms may be of the same order of magnitude as the imported ones, while the corresponding maximum uncertainties in core and skin temperatures always remain less than 2%. The maximum absolute deviations of the rectal (core) temperatures from their estimated mean values may be up to 0.72 °C and 0.22 °C, due to input uncertainties in shivering and sweating respectively, while the corresponding deviations due to uncertainties in vasomotion processes are negligible. The deviations, particularly the ones due to shivering, are significant, since differences of a few tenths of a degree may have large impact in human health. The maximum absolute deviations of the skin temperatures are 0.42 °C in the hands due to uncertainties in shivering and 0.69 °C in the feet due to uncertainties in vasodilatation. These deviations are less significant than the core ones, but they may still affect human thermal sensation and comfort. The present analysis provides a better insight in the dynamic response of the model and indicates which response mechanism needs to be further investigated by more accurate estimates in order to improve model reliability. It can be also applied in other human thermophysiological models.


Assuntos
Modelos Teóricos , Estremecimento , Termodinâmica , Humanos , Método de Monte Carlo , Temperatura Cutânea/fisiologia , Incerteza
2.
Micromachines (Basel) ; 10(4)2019 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-31013999

RESUMO

The manufacturing process and architecture of three Knudsen type micropumps are discussed and the associated flow performance characteristics are investigated. The proposed fabrication process, based on the deposition of successive dry film photoresist layers with low thermal conductivity, is easy to implement, adaptive to specific applications, cost-effective, and significantly improves thermal management. Three target application designs, requiring high mass flow rates (pump A), high pressure differences (pump B), and relatively high mass flow rates and pressure differences (pump C), are proposed. Computations are performed based on kinetic modeling via the infinite capillary theory, taking into account all foreseen manufacturing and operation constraints. The performance characteristics of the three pump designs in terms of geometry (number of parallel microchannels per stage and number of stages) and inlet pressure are obtained. It is found that pumps A and B operate more efficiently at pressures higher than 5 kPa and lower than 20 kPa, respectively, while the optimum operation range of pump C is at inlet pressures between 1 kPa and 20 kPa. In all cases, it is advisable to have the maximum number of stages as well as of parallel microchannels per stage that can be technologically realized.

3.
Artigo em Inglês | MEDLINE | ID: mdl-26172653

RESUMO

The well-known Knudsen paradox observed in pressure driven rarefied gas flows through long capillaries is quantitatively explored by decomposing the particle distribution function into its ballistic and collision parts. The classical channel, tube, and duct Poiseuille flows are considered. The solution is obtained by a typical direct simulation Monte Carlo algorithm supplemented by a suitable particle decomposition indexation process. It is computationally confirmed that in the free-molecular and early transition regimes the reduction rate of the ballistic flow is larger than the increase rate of the collision flow deducing the Knudsen minimum of the overall flow. This description interprets in a precise, quantitative manner the appearance of the Knudsen minimum and verifies previously reported qualitative physical arguments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...