Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38324904

RESUMO

Objective. Proton therapy reduces the integral dose to the patient compared to conventional photon treatments. However,in vivoproton range uncertainties remain a considerable hurdle. Range uncertainty reduction benefits depend on clinical practices. During intensity-modulated proton therapy (IMPT), the target is irradiated from only a few directions, but proton arc therapy (PAT), for which the target is irradiated from dozens of angles, may see clinical implementation by the time considerable range uncertainty reductions are achieved. It is therefore crucial to determine the impact of PAT on range uncertainty reduction benefits.Approach. For twenty head-and-neck cancer patients, four different treatment plans were created: an IMPT and a PAT treatment plan assuming current clinical range uncertainties of 3.5% (IMPT3.5%and PAT3.5%), and an IMPT and a PAT treatment plan assuming that range uncertainties can be reduced to 1% (IMPT1%and PAT1%). Plans were evaluated with respect to target coverage and organ-at-risk doses as well as normal tissue complication probabilities (NTCPs) for parotid glands (endpoint: parotid gland flow <25%) and larynx (endpoint: larynx edema).Main results. Implementation of PAT (IMPT3.5%-PAT3.5%) reduced mean NTCPs in the nominal and worst-case scenario by 3.2 percentage points (pp) and 4.2 pp, respectively. Reducing range uncertainties from 3.5% to 1% during use of IMPT (IMPT3.5%-IMPT1%) reduced evaluated NTCPs by 0.9 pp and 2.0 pp. Benefits of range uncertainty reductions subsequently to PAT implementation (PAT3.5%-PAT1%) were 0.2 pp and 1.0 pp, with considerably higher benefits in bilateral compared to unilateral cases.Significance. The mean clinical benefit of implementing PAT was more than twice as high as the benefit of a 3.5%-1% range uncertainty reduction. Range uncertainty reductions are expected to remain beneficial even after PAT implementation, especially in cases with target positions allowing for full leveraging of the higher number of gantry angles during PAT.


Assuntos
Neoplasias de Cabeça e Pescoço , Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Prótons , Incerteza , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco , Neoplasias de Cabeça e Pescoço/radioterapia
2.
Phys Med Biol ; 68(17)2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37463589

RESUMO

Objective. Range uncertainty in proton therapy is an important factor limiting clinical effectiveness. Magnetic resonance imaging (MRI) can measure voxel-wise molecular composition and, when combined with kilovoltage CT (kVCT), accurately determine mean ionization potential (Im), electron density, and stopping power ratio (SPR). We aimed to develop a novel MR-based multimodal method to accurately determine SPR and molecular compositions. This method was evaluated in tissue-mimicking andex vivoporcine phantoms, and in a brain radiotherapy patient.Approach. Four tissue-mimicking phantoms with known compositions, two porcine tissue phantoms, and a brain cancer patient were imaged with kVCT and MRI. Three imaging-based values were determined: SPRCM(CT-based Multimodal), SPRMM(MR-based Multimodal), and SPRstoich(stoichiometric calibration). MRI was used to determine two tissue-specific quantities of the Bethe Bloch equation (Im, electron density) to compute SPRCMand SPRMM. Imaging-based SPRs were compared to measurements for phantoms in a proton beam using a multilayer ionization chamber (SPRMLIC).Main results. Root mean square errors relative to SPRMLICwere 0.0104(0.86%), 0.0046(0.45%), and 0.0142(1.31%) for SPRCM, SPRMM, and SPRstoich, respectively. The largest errors were in bony phantoms, while soft tissue and porcine tissue phantoms had <1% errors across all SPR values. Relative to known physical molecular compositions, imaging-determined compositions differed by approximately ≤10%. In the brain case, the largest differences between SPRstoichand SPRMMwere in bone and high lipids/fat tissue. The magnitudes and trends of these differences matched phantom results.Significance. Our MR-based multimodal method determined molecular compositions and SPR in various tissue-mimicking phantoms with high accuracy, as confirmed with proton beam measurements. This method also revealed significant SPR differences compared to stoichiometric kVCT-only calculation in a clinical case, with the largest differences in bone. These findings support that including MRI in proton therapy treatment planning can improve the accuracy of calculated SPR values and reduce range uncertainties.


Assuntos
Neoplasias Encefálicas , Terapia com Prótons , Animais , Suínos , Prótons , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas , Imageamento por Ressonância Magnética , Calibragem , Planejamento da Radioterapia Assistida por Computador/métodos
3.
Phys Med Biol ; 67(20)2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36162404

RESUMO

Objective. Proton therapy of cancer improves dose conformality to the target and sparing of surrounding healthy tissues compared to conventional photon treatments. However, proton therapy's advantage could be even larger if proton range uncertainties were reduced. Sources of range uncertainties include computed tomography treatment planning images and variations in patient anatomy and setup. To reduce range uncertainties, we have developed a system for real-timein vivorange monitoring. The system is based on spectroscopy of prompt gamma-rays emitted through proton-nuclear interactions during irradiation. We validated the performance of our prompt gamma-ray spectroscopy detector prototype using tissue-mimicking and porcine samples.Approach. Measurements were performed in water, four tissue-mimicking samples (spongiosa, muscle, adipose tissue, and cortical bone), and two porcine samples (liver and brain). A dose of 0.9 Gy was delivered to a target at a depth of 12.5-17.5 cm. Multi-layer ionization chamber measurements were performed to determine stopping power ratios relative to water and ground truth proton ranges. Ground truth elemental compositions were determined using combustion analysis. Proton ranges and elemental compositions measured using prompt gamma-ray spectroscopy were compared to the ground truth.Main results. For all samples, the mean measured range over all pencil-beam spots differed from the ground truth by less than 1.2 mm. The mean standard deviation was 0.9 mm (range: 0.4-1.6 mm). The mean difference between ground truth and measured elemental compositions was 0.06gcm3(range: 0.00gcm3to 0.12gcm3).Significance. We verified the performance of our prompt gamma-ray spectroscopy detector prototype for proton range verification using tissue-mimicking and porcine samples. Measured proton ranges and elemental sample compositions were in good agreement with the ground truth. These measurements confirm the system's reliability for a variety of tissues and bridge the gap between previously-reported experiments and ongoingin vivopatient measurements.


Assuntos
Terapia com Prótons , Animais , Imagens de Fantasmas , Terapia com Prótons/métodos , Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Reprodutibilidade dos Testes , Análise Espectral , Suínos , Água/química
4.
Med Phys ; 49(7): 4693-4704, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35362163

RESUMO

PURPOSE: In proton therapy, dose distributions are currently often conformed to organs at risk (OARs) using the less sharp dose fall-off at the lateral beam edge to reduce the effects of uncertainties in the in vivo proton range. However, range uncertainty reductions may make greater use of the sharper dose fall-off at the distal beam edge feasible, potentially improving OAR sparing. We quantified the benefits of such novel beam arrangements. METHODS: For each of 10 brain or skull base cases, five treatment plans robust to 2 mm setup and 0%-4% range uncertainty were created for the traditional clinical beam arrangement and a novel beam arrangement making greater use of the distal beam edge to conform the dose distribution to the brainstem. Metrics including the brainstem normal tissue complication probability (NTCP) with the endpoint of necrosis were determined for all plans and all setup and range uncertainty scenarios. RESULTS: For the traditional beam arrangement, reducing the range uncertainty from the current level of approximately 4% to a potentially achievable level of 1% reduced the brainstem NTCP by up to 0.9 percentage points in the nominal and up to 1.5 percentage points in the worst-case scenario. Switching to the novel beam arrangement at 1% range uncertainty improved these values by a factor of 2, that is, to 1.8 percentage points and 3.2 percentage points, respectively. The novel beam arrangement achieved a lower brainstem NTCP in all cases starting at a range uncertainty of 2%. CONCLUSION: The benefits of novel beam arrangements may be of the same magnitude or even exceed the direct benefits of range uncertainty reductions. Indirect effects may therefore contribute markedly to the benefits of reducing proton range uncertainties.


Assuntos
Terapia com Prótons , Radioterapia de Intensidade Modulada , Estudos de Viabilidade , Órgãos em Risco , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Incerteza
5.
Med Phys ; 48(9): 5356-5366, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34260085

RESUMO

PURPOSE: Proton therapy allows for more conformal dose distributions and lower organ at risk and healthy tissue doses than conventional photon-based radiotherapy, but uncertainties in the proton range currently prevent proton therapy from making full use of these advantages. Numerous developments therefore aim to reduce such range uncertainties. In this work, we quantify the benefits of reductions in range uncertainty for treatments of skull base tumors. METHODS: The study encompassed 10 skull base patients with clival tumors. For every patient, six treatment plans robust to setup errors of 2 mm and range errors from 0% to 5% were created. The determined metrics included the brainstem and optic chiasm normal tissue complication probability (NTCP) with the endpoints of necrosis and blindness, respectively, as well as the healthy tissue volume receiving at least 70% of the prescription dose. RESULTS: A range uncertainty reduction from the current level of 4% to a potentially achievable level of 1% reduced the probability of brainstem necrosis by up to 1.3 percentage points in the nominal scenario in which neither setup nor range errors occur and by up to 2.9 percentage points in the worst-case scenario. Such a range uncertainty reduction also reduced the optic chiasm NTCP with the endpoint of blindness by up to 0.9 percentage points in the nominal scenario and by up to 2.2 percentage points in the worst-case scenario. The decrease in the healthy tissue volume receiving at least 70% of the prescription dose ranged from -7.8 to 24.1 cc in the nominal scenario and from -3.4 to 38.4 cc in the worst-case scenario. CONCLUSION: The benefits quantified as part of this study serve as a guideline of the OAR and healthy tissue dose benefits that range monitoring techniques may be able to achieve. Benefits were observed between all levels of range uncertainty. Even smaller range uncertainty reductions may therefore be beneficial.


Assuntos
Terapia com Prótons , Radioterapia de Intensidade Modulada , Neoplasias da Base do Crânio , Humanos , Órgãos em Risco , Probabilidade , Terapia com Prótons/efeitos adversos , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Neoplasias da Base do Crânio/radioterapia , Incerteza
6.
J Appl Clin Med Phys ; 22(6): 35-44, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34021691

RESUMO

Institutions use a range of different detector systems for patient-specific quality assurance (QA) measurements conducted to assure that the dose delivered by a patient's radiotherapy treatment plan matches the calculated dose distribution. However, the ability of different detectors to detect errors from different sources is often unreported. This study contains a systematic evaluation of Sun Nuclear's ArcCHECK in terms of the detectability of potential machine-related treatment errors. The five investigated sources of error were multileaf collimator (MLC) leaf positions, gantry angle, collimator angle, jaw positions, and dose output. The study encompassed the clinical treatment plans of 29 brain cancer patients who received stereotactic ablative radiotherapy (SABR). Six error magnitudes were investigated per source of error. In addition, the Eclipse AAA beam model dosimetric leaf gap (DLG) parameter was varied with four error magnitudes. Error detectability was determined based on the area under the receiver operating characteristic (ROC) curve (AUC). Detectability of DLG errors was good or excellent (AUC >0.8) at an error magnitude of at least ±0.4 mm, while MLC leaf position and gantry angle errors reached good or excellent detectability at error magnitudes of at least 1.0 mm and 0.6°, respectively. Ideal thresholds, that is, gamma passing rates, to maximize sensitivity and specificity ranged from 79.1% to 98.7%. The detectability of collimator angle, jaw position, and dose output errors was poor for all investigated error magnitudes, with an AUC between 0.5 and 0.6. The ArcCHECK device's ability to detect errors from treatment machine-related sources was evaluated, and ideal gamma passing rate thresholds were determined for each source of error. The ArcCHECK was able to detect errors in DLG value, MLC leaf positions, and gantry angle. The ArcCHECK was unable to detect the studied errors in collimator angle, jaw positions, and dose output.


Assuntos
Radioterapia de Intensidade Modulada , Encéfalo , Humanos , Garantia da Qualidade dos Cuidados de Saúde , Curva ROC , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
7.
EJNMMI Res ; 9(1): 76, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31414241

RESUMO

BACKGROUND: The bone marrow (BM) is a main risk organ during Lu-177-PSMA ligand therapy of metastasized castration-resistant prostate cancer (mCRPC) patients. So far, BM dosimetry relies on S values, which are pre-computed for reference anatomies, simplified activity distributions, and a physiological BM distribution. However, mCRPC patients may show a considerable bone lesion load, which leads to a heterogeneous and patient-specific activity accumulation close to BM-bearing sites. Furthermore, the patient-specific BM distribution might be significantly altered in the presence of bone lesions. The aim was to perform BM absorbed dose calculations through Monte Carlo (MC) simulations and to investigate the potential value of image-based BM localization. This study is based on 11 Lu-177-PSMA-617 therapy cycles of 10 patients (10 first cycles), who obtained a pre-therapeutic Ga-68-PSMA-11 PET/CT; quantitative Lu-177 SPECT acquisitions of the abdomen 24 (+CT), 48, and 72 h p.i.; and a Lu-177 whole-body planar acquisition at 24 h post-therapy. Patient-specific 3D volumes of interest were segmented from the Ga-68-PSMA-11 PET/CT, filled with activity information from the Lu-177 data, and imported into the FLUKA MC code together with the patient CT. MC simulations of the BM absorbed dose were performed assuming a physiological BM distribution according to the ICRP 110 reference male (MC1) or a displacement of active BM from the direct location of bone lesions (MC2). Results were compared with those from S values (SMIRD). BM absorbed doses were correlated with the decrease of lymphocytes, total white blood cells, hemoglobin level, and platelets. For two patients, an additional pre-therapeutic Tc-99m-anti-granulocyte antibody SPECT/CT was performed for BM localization. RESULTS: Median BM absorbed doses were 130, 37, and 11 mGy/GBq for MC1, MC2, and SMIRD, respectively. Significant strong correlation with the decrease of platelet counts was found, with highest correlation for MC2 (MC1: r = - 0.63, p = 0.04; MC2: r = - 0.71, p = 0.01; SMIRD: r = - 0.62, p = 0.04). For both investigated patients, BM localization via Tc-99m-anti-granulocyte antibody SPECT/CT indicated a displacement of active BM from the direct location of lesions similar to model MC2 and led to a reduction in the BM absorbed dose of 40 and 41% compared to MC1. CONCLUSION: Higher BM absorbed doses were observed for MC-based models; however, for MC2, all absorbed doses were still below 2 Gy. MC1 resulted in critical values for some patients, but is suspected to yield strongly exaggerated absorbed doses by neglecting bone marrow displacement. Image-based BM localization might be beneficial, and future studies are recommended to support an improvement for the prediction of hematoxicities.

8.
EJNMMI Res ; 8(1): 76, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30076556

RESUMO

BACKGROUND: The bone marrow (BM) is a main organ at risk in Lu-177-PSMA-617 therapy of prostate cancer and Lu-177-Octreotate therapy of neuroendocrine tumours. BM dosimetry is challenging and time-consuming, as different sequential quantitative measurements must be combined. The BM absorbed dose from the remainder of the body (ROB) can be determined from sequential whole-body planar (WB-P) imaging, while quantitative Lu-177-SPECT allows for more robust tumour and organ absorbed doses. The aim was to investigate a time-efficient and patient-friendly hybrid protocol (HP) for the ROB absorbed dose to the BM. It combines three abdominal quantitative SPECT (QSPECT) scans with a single WB-P acquisition and was compared with a reference protocol (RP) using sequential WB-P in combination with sequential QSPECT images. We investigated five patients receiving 7.4 GBq Lu-177-Octreotate and five patients treated with 3.7 GBq Lu-177-PSMA-617. Each patient had WB-P and abdominal SPECT acquisitions 24 (+ CT), 48, and 72 h post-injection. Blood samples were drawn 30 min, 80 min, 24 h, 48 h, and 72 h post-injection. BM absorbed doses from the ROB were estimated from sequential WB-P images (RP), via a mono-exponential fit and mass-scaled organ-level S values. For the HP, a mono-exponential fit on the QSPECT data was scaled with the activity of one WB-P image acquired either 24, 48, or 72 h post-injection (HP24, HP48, HP72). Total BM absorbed doses were determined as a sum of ROB, blood, major organ, and tumour contributions. RESULTS: Compared with the RP and for Lu-177-Octreotate therapy, median differences of the total BM absorbed doses were 13% (9-17%), 8% (4-15%), and 1% (0-5%) for the HP24, HP48, and HP72, respectively. For Lu-177-PSMA-617 therapy, total BM absorbed doses deviated 10% (2-20%), 3% (0-6%), and 2% (0-6%). CONCLUSION: For both Lu-177-Octreotate and Lu-177-PSMA-617 therapy, BM dosimetry via sequential QSPECT imaging and a single WB-P acquisition is feasible, if this WB-P image is acquired at a late time point (48 or 72 h post-injection). The reliability of the HP can be well accepted considering the uncertainties of quantitative Lu-177 imaging and BM dosimetry using standardised organ-level S values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...