Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Lett ; 391: 26-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048886

RESUMO

The bispyridinium oxime HI-6 DMS is in development as an improved therapy for the treatment of patients exposed to organophosphorus nerve agents. The aim of the work described in this paper was to provide non-clinical data to support regulatory approval of HI-6 DMS, by demonstrating efficacy against an oxime-sensitive agent, GB and an oxime-resistant agent, GD. We investigated the dose-dependent protection afforded by therapy including atropine, avizafone and HI-6 DMS in guinea-pigs challenged with GB or GD. We also compared the efficacy of 30 mg.kg-1 of HI-6 DMS to an equimolar dose of the current in-service oxime P2S and the dichloride salt of HI-6 (HI-6 Cl2). In the treatment of GB or GD poisoning there was no significant difference between the salt forms. The most effective dose of HI-6 DMS in preventing lethality following challenge with GB was 100 mg.kg-1; though protection ratios of at least 25 were obtained at 10 mg.kg-1. Protection against GD was lower, and there was no significant increase in effectiveness of HI-6 DMS doses of 30 or 100 mg.kg-1. For GD, the outcome was improved by the addition of pyridostigmine pre-treatment. These data demonstrate the benefits of HI-6 DMS as a component of nerve agent therapy. © Crown copyright (2023), Dstl.


Assuntos
Substâncias para a Guerra Química , Reativadores da Colinesterase , Agentes Neurotóxicos , Humanos , Animais , Cobaias , Agentes Neurotóxicos/toxicidade , Oximas/uso terapêutico , Compostos de Piridínio/uso terapêutico , Atropina/farmacologia , Atropina/uso terapêutico , Reativadores da Colinesterase/uso terapêutico , Substâncias para a Guerra Química/toxicidade , Antídotos/farmacologia , Antídotos/uso terapêutico
2.
PLoS One ; 18(4): e0284786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37083685

RESUMO

Organophosphate intoxication via acetylcholinesterase inhibition executes neurotoxicity via hyper stimulation of acetylcholine receptors. Here, we use the organophosphate paraoxon-ethyl to treat C. elegans and use its impact on pharyngeal pumping as a bio-assay to model poisoning through these neurotoxins. This assay provides a tractable measure of acetylcholine receptor mediated contraction of body wall muscle. Investigation of the time dependence of organophosphate treatment and the genetic determinants of the drug-induced inhibition of pumping highlight mitigating modulation of the effects of paraoxon-ethyl. We identified mutants that reduce acetylcholine receptor function protect against the consequence of intoxication by organophosphates. Data suggests that reorganization of cholinergic signalling is associated with organophosphate poisoning. This reinforces the under investigated potential of using therapeutic approaches which target a modulation of nicotinic acetylcholine receptor function to treat the poisoning effects of this important class of neurotoxins.


Assuntos
Intoxicação por Organofosfatos , Receptores Nicotínicos , Animais , Intoxicação por Organofosfatos/tratamento farmacológico , Paraoxon/uso terapêutico , Paraoxon/toxicidade , Inibidores da Colinesterase/uso terapêutico , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Acetilcolinesterase/metabolismo , Receptores Nicotínicos/genética , Neurotoxinas , Organofosfatos/toxicidade , Organofosfatos/uso terapêutico
3.
Toxics ; 10(4)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35448453

RESUMO

The therapeutic efficacy of treatments for acute intoxication with highly toxic organophosphorus compounds, called nerve agents, usually involves determination of LD50 values 24 h after nerve agent challenge without and with a single administration of the treatment. Herein, the LD50 values of four nerve agents (sarin, soman, tabun and cyclosarin) for non-treated and treated intoxication were investigated in mice for experimental end points of 6 and 24 h. The LD50 values of the nerve agents were evaluated by probit-logarithmical analysis of deaths within 6 and 24 h of i.m. challenge of the nerve agent at five different doses, using six mice per dose. The efficiency of atropine alone or atropine in combination with an oxime was practically the same at 6 and 24 h. The therapeutic efficacy of the higher dose of the antinicotinic compound MB327 was slightly higher at the 6 h end point compared to the 24 h end point for soman and tabun intoxication. A higher dose of MB327 increased the therapeutic efficacy of atropine alone for sarin, soman and tabun intoxication, and that of the standard antidotal treatment (atropine and oxime) for sarin and tabun intoxication. The therapeutic efficacy of MB327 was lower than the oxime-based antidotal treatment. To compare the 6 and 24 h end points, the influence of the experimental end point was not observed, with the exception of the higher dose of MB327. In addition, only a negligible beneficial impact of the compound MB327 was observed. Nevertheless, antinicotinics may offer an additional avenue for countering poisoning by nerve agents that are difficult to treat, and synthetic and biological studies towards the development of such novel drugs based on the core bispyridinium structure or other molecular scaffolds should continue.

4.
J Biol Chem ; 298(1): 101466, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864060

RESUMO

Complex biological functions within organisms are frequently orchestrated by systemic communication between tissues. In the model organism Caenorhabditis elegans, the pharyngeal and body wall neuromuscular junctions are two discrete structures that control feeding and locomotion, respectively. Separate, the well-defined neuromuscular circuits control these distinct tissues. Nonetheless, the emergent behaviors, feeding and locomotion, are coordinated to guarantee the efficiency of food intake. Here, we show that pharmacological hyperactivation of cholinergic transmission at the body wall muscle reduces the rate of pumping behavior. This was evidenced by a systematic screening of the effect of the cholinesterase inhibitor aldicarb on the rate of pharyngeal pumping on food in mutant worms. The screening revealed that the key determinants of the inhibitory effect of aldicarb on pharyngeal pumping are located at the body wall neuromuscular junction. In fact, the selective stimulation of the body wall muscle receptors with the agonist levamisole inhibited pumping in a lev-1-dependent fashion. Interestingly, this response was independent of unc-38, an alpha subunit of the nicotinic receptor classically expressed with lev-1 at the body wall muscle. This implies an uncharacterized lev-1-containing receptor underpins this effect. Overall, our results reveal that body wall cholinergic transmission not only controls locomotion but simultaneously inhibits feeding behavior.


Assuntos
Proteínas de Caenorhabditis elegans , Inibidores da Colinesterase , Comportamento Alimentar , Junção Neuromuscular , Aldicarb/farmacologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Inibidores da Colinesterase/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Levamisol/farmacologia , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/metabolismo , Transdução de Sinais
5.
J Physiol ; 599(24): 5417-5449, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748643

RESUMO

Intentional ingestion of agricultural organophosphorus insecticides is a significant public health issue in rural Asia, causing thousands of deaths annually. Some survivors develop a severe, acute or delayed myasthenic syndrome. In animal models, similar myasthenia has been associated with increasing plasma concentration of one insecticide solvent metabolite, cyclohexanol. We investigated possible mechanisms using voltage and current recordings from mouse neuromuscular junctions (NMJs) and transfected human cell lines. Cyclohexanol (10-25 mM) reduced endplate potential (EPP) amplitudes by 10-40% and enhanced depression during repetitive (2-20 Hz) stimulation by up to 60%. EPP decay was prolonged more than twofold. Miniature EPPs were attenuated by more than 50%. Cyclohexanol inhibited whole-cell currents recorded from CN21 cells expressing human postjunctional acetylcholine receptors (hnAChR) with an IC50 of 3.74 mM. Cyclohexanol (10-20 mM) also caused prolonged episodes of reduced-current, multi-channel bursting in outside-out patch recordings from hnAChRs expressed in transfected HEK293T cells, reducing charge transfer by more than 50%. Molecular modelling indicated cyclohexanol binding (-6 kcal/mol) to a previously identified alcohol binding site on nicotinic AChR α-subunits. Cyclohexanol also increased quantal content of evoked transmitter release by ∼50%. In perineurial recordings, cyclohexanol selectively inhibited presynaptic K+ currents. Modelling indicated cyclohexanol binding (-3.8 kcal/mol) to voltage-sensitive K+ channels at the same site as tetraethylammonium (TEA). TEA (10 mM) blocked K+ channels more effectively than cyclohexanol but EPPs were more prolonged in 20 mM cyclohexanol. The results explain the pattern of neuromuscular dysfunction following ingestion of organophosphorus insecticides containing cyclohexanol precursors and suggest that cyclohexanol may facilitate investigation of mechanisms regulating synaptic strength at NMJs. KEY POINTS: Intentional ingestion of agricultural organophosphorus insecticides is a significant public health issue in rural Asia, causing thousands of deaths annually. Survivors may develop a severe myasthenic syndrome or paralysis, associated with increased plasma levels of cyclohexanol, an insecticide solvent metabolite. Analysis of synaptic transmission at neuromuscular junctions in isolated mouse skeletal muscle, using isometric tension recording and microelectrode recording of endplate voltages and currents, showed that cyclohexanol reduced postsynaptic sensitivity to acetylcholine neurotransmitter (reduced quantal size) while simultaneously enhancing evoked transmitter release (increased quantal content). Patch recording from transfected cell lines, together with molecular modelling, indicated that cyclohexanol causes selective, allosteric antagonism of postsynaptic nicotinic acetylcholine receptors and block of presynaptic K+ -channel function. The data provide insight into the cellular and molecular mechanisms of neuromuscular weakness following intentional ingestion of agricultural organophosphorus insecticides. Our findings also extend understanding of the effects of alcohols on synaptic transmission and homeostatic synaptic function.


Assuntos
Cicloexanóis , Junção Neuromuscular , Animais , Células HEK293 , Humanos , Camundongos , Placa Motora , Receptores Colinérgicos , Transmissão Sináptica
6.
Toxicol Lett ; 340: 114-122, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33482275

RESUMO

Organophosphorus nerve agents (NAs) are the most lethal chemical warfare agents and have been used by state and non-state actors since their discovery in the 1930s. They covalently modify acetylcholinesterase, preventing the breakdown of acetylcholine (ACh) with subsequent loss of synaptic transmission, which can result in death. Despite the availability of several antidotes for OPNA exposure, none directly targets the nicotinic acetylcholine receptor (nAChR) mediated component of toxicity. Non-oxime bispyridinium compounds (BPDs) have been shown previously to partially counteract the effects of NAs at skeletal muscle tissue, and this has been attributed to inhibition of the muscle nAChR. Functional data indicate that, by increasing the length of the alkyl linker between the pyridinium moieties of BPDs, the antagonistic activity at nAChRs can be improved. Molecular dynamics simulations of the adult muscle nAChR in the presence of BPDs identified key residues likely to be involved in binding. Subsequent two-electrode voltage clamp recordings showed that one of the residues, εY131, acts as an allosteric determinant of BPD binding, and that longer BPDs have a greater stabilizing effect on the orthosteric loop C than shorter ones. The work reported will inform future design work on novel antidotes for treating NA exposure.


Assuntos
Antídotos/química , Antídotos/farmacologia , Agentes Neurotóxicos/toxicidade , Antagonistas Nicotínicos/toxicidade , Receptores Nicotínicos/metabolismo , Animais , Modelos Moleculares , Simulação de Acoplamento Molecular , Oócitos/metabolismo , Conformação Proteica , Compostos de Piridínio , Relação Estrutura-Atividade , Xenopus laevis
7.
Neurotoxicology ; 82: 50-62, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33176172

RESUMO

Inhibition of acetylcholinesterase by either organophosphates or carbamates causes anti-cholinesterase poisoning. This arises through a wide range of neurotoxic effects triggered by the overstimulation of the cholinergic receptors at synapses and neuromuscular junctions. Without intervention, this poisoning can lead to profound toxic effects, including death, and the incomplete efficacy of the current treatments, particularly for oxime-insensitive agents, provokes the need to find better antidotes. Here we show how the non-parasitic nematode Caenorhabditis elegans offers an excellent tool for investigating the acetylcholinesterase intoxication. The C. elegans neuromuscular junctions show a high degree of molecular and functional conservation with the cholinergic transmission that operates in the autonomic, central and neuromuscular synapses in mammals. In fact, the anti-cholinesterase intoxication of the worm's body wall neuromuscular junction has been unprecedented in understanding molecular determinants of cholinergic function in nematodes and other organisms. We extend the use of the model organism's feeding behaviour as a tool to investigate carbamate and organophosphate mode of action. We show that inhibition of the cholinergic-dependent rhythmic pumping of the pharyngeal muscle correlates with the inhibition of the acetylcholinesterase activity caused by aldicarb, paraoxons and DFP exposure. Further, this bio-assay allows one to address oxime dependent reversal of cholinesterase inhibition in the context of whole organism recovery. Interestingly, the recovery of the pharyngeal function after such anti-cholinesterase poisoning represents a sensitive and easily quantifiable phenotype that is indicative of the spontaneous recovery or irreversible modification of the worm acetylcholinesterase after inhibition. These observations highlight the pharynx of C. elegans as a new tractable approach to explore anti-cholinesterase intoxication and recovery with the potential to resolve critical genetic determinants of these neurotoxins' mode of action.


Assuntos
Antídotos/uso terapêutico , Bioensaio/métodos , Caenorhabditis elegans/efeitos dos fármacos , Inibidores da Colinesterase/intoxicação , Faringe/efeitos dos fármacos , Aldicarb/farmacologia , Animais , Intoxicação por Organofosfatos/diagnóstico , Faringe/fisiologia
8.
Toxicol Mech Methods ; 30(9): 703-710, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32878547

RESUMO

Therapeutic efficacy of antidotal treatment of acute poisoning by nerve agents is generally assessed by the evaluation of LD50 values of nerve agents over 24 h following poisoning without or with a single administration of antidotal treatment. In this study, LD50 values of four nerve agents (sarin, soman, tabun and cyclosarin) for non-treated and treated poisoning were evaluated in mice for two experimental end points - 6 h and 24 h. While the efficacy of atropine or oxime-based antidotal treatment was the same regardless of the experimental end point, the therapeutic efficacy of all three newly developed bispyridinium non-oxime compounds (MB408, MB442, and MB444) was mostly slightly higher at the 6 h end point compared to the 24 h end point, although the therapeutic efficacy of MB compounds was not superior to oxime-based antidotal treatment. These results contrast with a study in guinea-pigs using a structurally-related compound, MB327, which showed a striking increase in protection at 6 h compared to 24 h. It is suggested that the disparity may be due to pharmacokinetic differences between the two animal species.


Assuntos
Antídotos/farmacologia , Substâncias para a Guerra Química/toxicidade , Reativadores da Colinesterase/farmacologia , Antagonistas Nicotínicos/farmacologia , Intoxicação por Organofosfatos/tratamento farmacológico , Animais , Dose Letal Mediana , Masculino , Camundongos , Intoxicação por Organofosfatos/etiologia , Organofosfatos/toxicidade , Compostos Organofosforados/toxicidade , Oximas/farmacologia , Compostos de Piridínio/farmacologia , Sarina/toxicidade , Soman/toxicidade , Fatores de Tempo
9.
Toxicol Lett ; 325: 67-76, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32017982

RESUMO

Racemic 3-quinuclidinyl-α-methoxydiphenylacetate (MB266) was synthesised. Its activity at muscarinic acetylcholine receptors (mAChRs), and muscle and neuronal nicotinic acetylcholine receptors (nAChRs), was compared to that of atropine and racemic 3-quinucidinyl benzilate (QNB) using a functional assay based on agonist-induced elevation of intracellular calcium ion concentration in CN21, Chinese Hamster Ovary (CHO) and SHSY5Y human cell lines. MB266 acted as an antagonist at acetylcholine receptors, displaying 18-fold selectivity for mAChR versus nAChR (compared to the 15,200-fold selectivity observed for QNB). Thus O-methylation of QNB reduced the affinity for mAChR antagonism and increased the relative potency at both muscle and neuronal nAChRs. Despite MB266 having a pharmacological profile potentially useful for the treatment of anticholinesterase poisoning, its administration did not improve the neuromuscular function in a soman-poisoned guinea-pig diaphragm preparation pretreated with the organophosphorus nerve agent soman. Consideration should be given to exploring the potential of MB266 for possible anticonvulsant action in vitro as part of a multi-targeted ligand approach.


Assuntos
Antídotos/farmacologia , Antídotos/uso terapêutico , Inibidores da Colinesterase/intoxicação , Antagonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/uso terapêutico , Agentes Neurotóxicos/intoxicação , Antagonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/uso terapêutico , Animais , Anticonvulsivantes/química , Anticonvulsivantes/uso terapêutico , Antídotos/síntese química , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Diafragma/efeitos dos fármacos , Cobaias , Humanos , Técnicas In Vitro , Masculino , Antagonistas Muscarínicos/síntese química , Músculo Esquelético/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Antagonistas Nicotínicos/síntese química , Convulsões/induzido quimicamente , Convulsões/prevenção & controle , Soman/intoxicação
10.
Toxicology ; 408: 95-100, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30005893

RESUMO

The effect of three newly developed bispyridinium non-oxime compounds (MB408, MB442, and MB444) on the therapeutic efficacy of a standard antidotal treatment (atropine in combination with the oxime HI-6 or obidoxime) of acute poisoning by two nerve agents (sarin and cyclosarin) in mice was studied. The therapeutic efficacy of atropine in combination with an oxime with or without one of the bispyridinium non-oximes was evaluated by determination of the 24 h LD50 values of the nerve agents studied and by measurement of the survival time after supralethal poisoning. Addition of all tested non-oximes increased the therapeutic efficacy of atropine in combination with an oxime against sarin poisoning; however, the differences were not significant. The non-oximes also positively influenced the number of surviving mice 6 h after supralethal poisoning with sarin. In the case of cyclosarin, they were also slightly beneficial in the treatment of acute poisoning. The higher dose of MB444 was able to significantly increase the therapeutic efficacy of standard antidotal treatment of poisoning with cyclosarin. The benefit of each bispyridinium non-oxime compound itself was obviously dose-dependent. In summary, the addition of MB compounds to the standard antidotal treatment of acute nerve agent poisoning was beneficial for the antidotal treatment of sarin or cyclosarin poisoning, although their benefit at 24 h after poisoning was not significant, with the exception of the higher dose of MB444 against cyclosarin.


Assuntos
Atropina/farmacologia , Cloreto de Obidoxima/farmacologia , Intoxicação por Organofosfatos/tratamento farmacológico , Compostos Organofosforados , Oximas/farmacologia , Compostos de Piridínio/farmacologia , Sarina , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Dose Letal Mediana , Masculino , Camundongos , Fatores de Tempo
11.
Basic Clin Pharmacol Toxicol ; 122(4): 429-435, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29117635

RESUMO

The influence of three newly developed bispyridinium antinicotinic compounds (the non-oximes MB408, MB442 and MB444) on the therapeutic efficacy of a standard antidotal treatment (atropine in combination with an oxime) of acute poisoning by the organophosphorus nerve agents tabun and soman was studied in mice. The therapeutic efficacy of atropine in combination with an oxime with or without one of the bispyridinium non-oximes was evaluated by determination of the LD50 values of the nerve agents and measurement of the survival time after supralethal poisoning. Addition of all the tested non-oximes increased significantly the therapeutic efficacy of atropine in combination with an oxime against tabun poisoning. They also positively influenced the number of surviving mice 6 hr after supralethal poisoning with tabun. However, they were only slightly effective for the treatment of soman poisoning. The benefit of the tested bispyridinium non-oximes was dose-dependent. To conclude, the addition of bispyridinium non-oximes to the standard antidotal treatment of acute poisoning with tabun was beneficial regardless of the chosen non-oxime, but only slightly beneficial in the case of soman poisoning.


Assuntos
Antídotos/uso terapêutico , Agentes Neurotóxicos/intoxicação , Agonistas Nicotínicos/farmacologia , Intoxicação por Organofosfatos/tratamento farmacológico , Compostos de Piridínio/uso terapêutico , Animais , Antídotos/síntese química , Antídotos/farmacologia , Atropina/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Dose Letal Mediana , Masculino , Camundongos , Agonistas Nicotínicos/síntese química , Intoxicação por Organofosfatos/etiologia , Organofosfatos/toxicidade , Oximas/farmacologia , Compostos de Piridínio/síntese química , Compostos de Piridínio/farmacologia , Soman/intoxicação , Resultado do Tratamento
12.
Chem Biol Interact ; 259(Pt B): 175-181, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27144491

RESUMO

The provision of effective Medical Countermeasures (MedCM) for all agents and routes of exposure is a strategic goal of defence research and development. In the case of military autoinjector-based therapies for nerve agent poisoning, current treatment effectiveness is limited by the oxime reactivator being effective against only certain agents, by rapid clearance times of the drugs and because the doses may not be optimal for treatment of severe poisoning. Prolonged poisoning by nerve agents entering the body through the skin is also challenging. Since casualty handling timelines have reduced significantly in recent years, it may be sufficient for first aid therapy to provide protection for only a few hours until further medical treatment is available. Therefore, the traditional evaluation of first aid therapy in animal models of survival at 24 h may not be appropriate. At various echelons of medical care, further therapeutic interventions are possible. The current basis for the medical management of nerve-agent poisoned casualties is derived mainly from clinical experience with pesticide poisoning. Adjunct therapy with a bioscavenger (such as human butyrylcholinesterase (huBChE)), could have utility as a delayed intervention by reducing the toxic load. It has previously been demonstrated that huBChE is an effective post-exposure therapy against percutaneous VX poisoning. It is recommended that the scope of animal models of nerve agent MedCM are extended to cover evaluation of both first aid MedCM over significantly reduced timescales, and subsequent supportive therapeutic and medical management strategies over longer timescales. In addition to bioscavengers, these strategies could include repeated combined and individual therapy drugs to alleviate symptoms, other classes of drugs or ventilatory support. Crown Copyright © [2016] Published by Elsevier Ireland Ltd. This is an open access article under the Open Government Licence (OGL) (http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/).


Assuntos
Butirilcolinesterase/administração & dosagem , Reativadores da Colinesterase/uso terapêutico , Agentes Neurotóxicos/intoxicação , Intoxicação por Organofosfatos/terapia , Animais , Atropina/uso terapêutico , Butirilcolinesterase/sangue , Substâncias para a Guerra Química/intoxicação , Primeiros Socorros , Cobaias , Humanos , Medicina Militar , Compostos Organotiofosforados/intoxicação
13.
Toxicol Mech Methods ; 26(5): 334-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27097774

RESUMO

The potency of the bispyridinium non-oxime compound MB327 [1,1'-(propane-1,3-diyl)bis(4-tert-butylpyridinium) diiodide] to increase the therapeutic efficacy of the standard antidotal treatment (atropine in combination with an oxime) of acute poisoning with organophosphorus nerve agents was studied in vivo. The therapeutic efficacy of atropine alone - or atropine in combination with an oxime, MB327, or both an oxime and MB237 - was evaluated by the determination of LD50 values of several nerve agents (tabun, sarin and soman) in mice with and without treatment. The addition of MB327 increased the therapeutic efficacy of atropine alone, and atropine in combination with an oxime, against all three nerve agents, although differences in the LD50 values only reached statistical significance for sarin. In conclusion, the addition of the compound MB327 to the standard antidotal treatment of acute poisonings with nerve agents was beneficial regardless of the chemical structure of the nerve agent, although at the dose employed, MB327 in combination with atropine, or atropine and an oxime, provided only a modest increase in protection ratio. These results from mice, and previous ones from guinea-pigs, provide consistent evidence for additional, albeit modest, efficacy resulting from the inclusion of the antinicotinic compound MB327 in standard antidotal therapy. Given the typically steep probit slope for the dose-lethality relationship for nerve agents, such modest increases in protection ratio could provide significant survival benefit.


Assuntos
Antídotos/uso terapêutico , Atropina/uso terapêutico , Agentes Neurotóxicos/intoxicação , Oximas/uso terapêutico , Compostos de Piridínio/uso terapêutico , Animais , Antídotos/administração & dosagem , Antídotos/toxicidade , Atropina/administração & dosagem , Atropina/toxicidade , Quimioterapia Combinada , Dose Letal Mediana , Masculino , Camundongos Endogâmicos , Estrutura Molecular , Oximas/administração & dosagem , Oximas/toxicidade , Intoxicação/tratamento farmacológico , Compostos de Piridínio/administração & dosagem , Compostos de Piridínio/síntese química , Compostos de Piridínio/toxicidade
14.
Toxicol Lett ; 244: 154-160, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26325216

RESUMO

Current organophosphorus nerve agent medical countermeasures do not directly address the nicotinic effects of poisoning. A series of antinicotinic bispyridinium compounds has been synthesized in our laboratory and screened in vitro. Their actions can include open-channel block at the nicotinic receptor which may contribute to their efficacy. The current lead compound from these studies, MB327 1,1'-(propane-1,3-diyl)bis(4-tert-butylpyridinium) as either the diiodide (I2) or dimethanesulfonate (DMS) has been examined in vivo for efficacy against nerve agent poisoning. MB327 I2 (0-113mgkg(-1)) or the oxime HI-6 DMS (0-100mgkg(- 1)), in combination with atropine and avizafone (each at 3mgkg(-1)) was administered to guinea-pigs 1min following soman poisoning. Treatment increased the LD50 of soman in a dose-dependent manner. The increase was statistically significant (p<0.01) at the 33.9mgkg(-1) (MB327) or 30mgkg(-1) (HI-6) dose with a comparable degree of protection obtained for both compounds. Following administration of 10mgkg(-1) (i.m.), MB327 DMS reached plasma Cmax of 22µM at 12min with an elimination t1/2 of 22min. In an adverse effect study, in the absence of nerve agent poisoning, a dose of 100mgkg(-1) or higher of MB327 DMS was lethal to the guinea-pigs. A lower dose of MB327 DMS (30mgkg(-1)) caused flaccid paralysis accompanied by respiratory impairment. Respiration normalised by 30min, although the animals remained incapacitated to 4h. MB327 or related compounds may be of utility in treatment of nerve agent poisoning as a component of therapy with atropine, anticonvulsant and oxime, or alternatively as an infusion under medical supervision.


Assuntos
Antídotos/farmacocinética , Agentes Neurotóxicos , Antagonistas Nicotínicos/farmacocinética , Intoxicação/tratamento farmacológico , Compostos de Piridínio/farmacocinética , Soman , Animais , Anticonvulsivantes/administração & dosagem , Antídotos/administração & dosagem , Antídotos/toxicidade , Atropina/administração & dosagem , Dipeptídeos/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Cobaias , Dose Letal Mediana , Masculino , Antagonistas Muscarínicos/administração & dosagem , Antagonistas Nicotínicos/administração & dosagem , Antagonistas Nicotínicos/sangue , Antagonistas Nicotínicos/toxicidade , Intoxicação/sangue , Intoxicação/diagnóstico , Intoxicação/fisiopatologia , Compostos de Piridínio/administração & dosagem , Compostos de Piridínio/sangue , Compostos de Piridínio/toxicidade
15.
PLoS One ; 10(8): e0135811, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26274808

RESUMO

Standard treatment of poisoning by organophosphorus anticholinesterases uses atropine to reduce the muscarinic effects of acetylcholine accumulation and oximes to reactivate acetylcholinesterase (the effectiveness of which depends on the specific anticholinesterase), but does not directly address the nicotinic effects of poisoning. Bispyridinium molecules which act as noncompetitive antagonists at nicotinic acetylcholine receptors have been identified as promising compounds and one has been shown to improve survival following organophosphorus poisoning in guinea-pigs. Here, we have investigated the structural requirements for antagonism and compared inhibitory potency of these compounds at muscle and neuronal nicotinic receptors and acetylcholinesterase. A series of compounds was synthesised, in which the length of the polymethylene linker between the two pyridinium moieties was increased sequentially from one to ten carbon atoms. Their effects on nicotinic receptor-mediated calcium responses were tested in muscle-derived (CN21) and neuronal (SH-SY5Y) cells. Their ability to inhibit acetylcholinesterase activity was tested using human erythrocyte ghosts. In both cell lines, the nicotinic response was inhibited in a dose-dependent manner and the inhibitory potency of the compounds increased with greater linker length between the two pyridinium moieties, as did their inhibitory potency for human acetylcholinesterase activity in vitro. These results demonstrate that bispyridinium compounds inhibit both neuronal and muscle nicotinic receptors and that their potency depends on the length of the hydrocarbon chain linking the two pyridinium moieties. Knowledge of structure-activity relationships will aid the optimisation of molecular structures for therapeutic use against the nicotinic effects of organophosphorus poisoning.


Assuntos
Músculo Esquelético/metabolismo , Neurônios/metabolismo , Intoxicação por Organofosfatos/metabolismo , Compostos Organofosforados/toxicidade , Compostos de Piridínio/toxicidade , Receptores Nicotínicos/metabolismo , Acetilcolinesterase/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Cobaias , Humanos , Músculo Esquelético/patologia , Neurônios/patologia
16.
Chem Biol Interact ; 203(1): 160-6, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-22981459

RESUMO

Potent organophosphorous (OP) agents, such as VX, are hazardous by absorption through the skin and are resistant to conventional pharmacological antidotal treatments. The residence time of a stoichiometric bioscavenger, human butyrylcholinesterase (huBuChE), in the plasma more closely matches that of VX than do the residence times of conventional therapy drugs (oxime, anti-muscarinic, anticonvulsant). Intramuscular (i.m.) huBuChE afforded almost complete protection when administered prior to the onset of observable cholinergic signs of VX poisoning, but once signs of poisoning became evident the efficacy of i.m. huBuChE decreased. A combination of nerve agent therapy drugs (oxime, anti-muscarinic, anticonvulsant) with huBuChE (i.m.) protected 100% (8/8) of guinea-pigs from a lethal dose of VX (0.74 mg/kg) to 48 h, even when administered on signs of poisoning. Survival was presumed to be due to immediate alleviation of the cholinergic crisis by the conventional pharmacological treatment drugs, in conjunction with bioscavenger that prevented further absorbed agent reaching the AChE targets. Evidence to support this proposed mechanism of action was obtained from PKPD experiments in which multiple blood samples and microdialysate samples were collected from individual conscious ambulatory animals. Plasma concentrations of intramuscularly-administered atropine, diazepam and HI-6 reached a peak within 15 min and were eliminated rapidly within 4h. Plasma concentrations of huBuChE administered by the i.m. route took approximately 24h to reach a peak, but were well-maintained over the subsequent 7days. Thus, the pharmacological therapy rapidly treated the initial signs of poisoning, whilst the bioscavenger provided prolonged protection by neutralising further nerve agent entering the bloodstream and preventing it from reaching the target organs.


Assuntos
Butirilcolinesterase/sangue , Butirilcolinesterase/uso terapêutico , Substâncias para a Guerra Química/intoxicação , Intoxicação por Organofosfatos/terapia , Acetilcolinesterase/sangue , Animais , Antídotos/administração & dosagem , Atropina/administração & dosagem , Butirilcolinesterase/administração & dosagem , Reativadores da Colinesterase/administração & dosagem , Diazepam/administração & dosagem , Cobaias , Humanos , Injeções Intramusculares , Masculino , Intoxicação por Organofosfatos/sangue , Compostos Organotiofosforados/intoxicação , Oximas/administração & dosagem , Compostos de Piridínio/administração & dosagem
17.
Naunyn Schmiedebergs Arch Pharmacol ; 373(3): 230-6, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16736160

RESUMO

The enzyme atropinesterase (EC 3.1.1.10) causes the rapid hydrolysis of tropane alkaloids such as atropine and scopolamine. This enzyme is known to occur in a certain proportion of rabbits and some plants, although its presence in other animal species remains controversial. The potential presence in some animals but not others of an enzyme which can rapidly hydrolyse compounds such as atropine is a potential unwanted experimental variable in many experiments. Because of the uncertainty surrounding the enzyme and the paucity of data, it was decided to examine whether we could detect and characterise atropinesterase activity in the plasma of dogs, goats, guinea-pigs, humans, pigs, rabbits and rhesus by separating and quantitating the substrate (atropine) and one of the products (tropic acid) by high performance liquid chromatography (HPLC). It was found that plasma from some but not all rabbits possessed a capacity to breakdown large quantities of atropine; an effect that was apparently enantiomer-specific. Plasma from other rabbits, and plasma from all other species investigated, proved capable of hydrolysing atropine at a rate exceeding that of non-specific breakdown. It remains to be determined whether this effect is due to a low expression of atropinesterase or an alternative hydrolysing enzyme.


Assuntos
Hidrolases de Éster Carboxílico/sangue , Hidrolases de Éster Carboxílico/metabolismo , Animais , Atropina/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Hidrólise , Técnicas de Diluição do Indicador , Fenilpropionatos/metabolismo , Especificidade por Substrato
18.
Eur J Pharmacol ; 518(2-3): 123-32, 2005 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-16054127

RESUMO

Seizures arising from acetylcholinesterase inhibition are a feature of organophosphate anticholinesterase intoxication. Although benzodiazepines are effective against these seizures, alternative anticonvulsant drugs may possess greater efficacy and fewer side-effects. We have investigated in the guinea-pig hippocampal slice preparation the ability of a series of anticonvulsants to suppress epileptiform bursting induced by the irreversible organophosphate anticholinesterase, soman (100 nM). Carbamazepine (300 microM), phenytoin (100 microM), topiramate (100-300 microM) and retigabine (1-30 microM) reduced the frequency of bursting but only carbamazepine and phenytoin induced a concurrent reduction in burst duration. Felbamate (100-500 microM) and clomethiazole (100-300 microM) had no effect on burst frequency but decreased burst duration. Clozapine (3-30 microM) reduced the frequency but did not influence burst duration. Levetiracetam (100-300 microM) and gabapentin (100-300 microM) were without effect. These data suggest that several compounds, in particular clomethiazole, clozapine, felbamate, topiramate and retigabine, merit further evaluation as possible treatments for organophosphate poisoning.


Assuntos
Anticonvulsivantes/farmacologia , Hipocampo/efeitos dos fármacos , Soman/toxicidade , Aminas/farmacologia , Animais , Carbamatos/farmacologia , Carbamazepina/farmacologia , Clormetiazol/farmacologia , Clozapina/farmacologia , Ácidos Cicloexanocarboxílicos/farmacologia , Relação Dose-Resposta a Droga , Epilepsia/induzido quimicamente , Epilepsia/fisiopatologia , Felbamato , Frutose/análogos & derivados , Frutose/farmacologia , Gabapentina , Cobaias , Hipocampo/fisiopatologia , Técnicas In Vitro , Levetiracetam , Masculino , Fenilcarbamatos , Fenilenodiaminas/farmacologia , Piracetam/análogos & derivados , Piracetam/farmacologia , Propilenoglicóis/farmacologia , Topiramato , Ácido gama-Aminobutírico/farmacologia
19.
Eur J Pharmacol ; 511(2-3): 99-107, 2005 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-15792777

RESUMO

Seven drugs of abuse have been examined for effects on the action potential in sheep isolated cardiac Purkinje fibres. Phencyclidine (5 microM) induced a significant increase (30.7%) in action potential duration at 90% repolarisation (APD(90)). Similarly, 10 microM 3,4-methylenedioxymethamphetamine (MDMA, 'Ecstasy') induced a significant increase in APD(90) of 12.1%. Although Delta(9)-tetrahydrocannabinol (0.1 microM) induced a small, but statistically significant, 4.8% increase in APD(90), no effects were observed at 0.01 or 1 microM. Cocaethylene (10 microM) induced a significant shortening of APD(90) (-23.8%). Cocaine (up to 1 microM), (+)-methamphetamine ('Speed'; up to 5 microM), and the heroin metabolite, morphine (up to 5 microM), had no statistically significant effects. The possible significance of these findings is discussed in the context of other recognised cardiac effects of the tested drugs.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Cocaína/análogos & derivados , Drogas Ilícitas/farmacologia , Ramos Subendocárdicos/efeitos dos fármacos , Animais , Cocaína/farmacologia , Relação Dose-Resposta a Droga , Dronabinol/farmacologia , Técnicas In Vitro , Masculino , Metanfetamina/farmacologia , Morfina/farmacologia , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Fenciclidina/farmacologia , Ramos Subendocárdicos/fisiologia , Ovinos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...