Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 43(8): 2665-2681, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32078536

RESUMO

Seeded segmentation methods have gained a lot of attention due to their good performance in fragmenting complex images, easy usability and synergism with graph-based representations. These methods usually rely on sophisticated computational tools whose performance strongly depends on how good the training data reflect a sought image pattern. Moreover, poor adherence to the image contours, lack of unique solution, and high computational cost are other common issues present in most seeded segmentation methods. In this work we introduce Laplacian Coordinates, a quadratic energy minimization framework that tackles the issues above in an effective and mathematically sound manner. The proposed formulation builds upon graph Laplacian operators, quadratic energy functions, and fast minimization schemes to produce highly accurate segmentations. Moreover, the presented energy functions are not prone to local minima, i.e., the solution is guaranteed to be globally optimal, a trait not present in most image segmentation methods. Another key property is that the minimization procedure leads to a constrained sparse linear system of equations, enabling the segmentation of high-resolution images at interactive rates. The effectiveness of Laplacian Coordinates is attested by a comprehensive set of comparisons involving nine state-of-the-art methods and several benchmarks extensively used in the image segmentation literature.

2.
IEEE Comput Graph Appl ; 37(3): 43-51, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28459671

RESUMO

During the creative process, designers use various techniques and strategies to move from the abstract to the concrete, utilizing different physical and virtual means to represent form. The changes between virtual and physical models are not always fluent, however. Differential 3D scanning can detect the differences between a scanned model (point cloud) and a reference model (polygon mesh or CAD model) and then reflect those changes in the reference model. This can save designers time by reconstructing only the small changed regions rather than the entire object.

3.
IEEE Trans Pattern Anal Mach Intell ; 39(2): 385-396, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27046868

RESUMO

In this article we present the first effective method based on global optimization for the reconstruction of image puzzles comprising rectangle pieces-Puzzle Solving by Quadratic Programming (PSQP). The proposed novel mathematical formulation reduces the problem to the maximization of a constrained quadratic function, which is solved via a gradient ascent approach. The proposed method is deterministic and can deal with arbitrary identical rectangular pieces. We provide experimental results showing its effectiveness when compared to state-of-the-art approaches. Although the method was developed to solve image puzzles, we also show how to apply it to the reconstruction of simulated strip-shredded documents, broadening its applicability.

4.
IEEE Trans Vis Comput Graph ; 22(3): 1223-35, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26469283

RESUMO

Existing algorithms for building layouts from geometric primitives are typically designed to cope with requirements such as orthogonal alignment, overlap removal, optimal area usage, hierarchical organization, among others. However, most techniques are able to tackle just a few of those requirements simultaneously, impairing their use and flexibility. In this work we propose a novel methodology for building layouts from geometric primitives that concurrently addresses a wider range of requirements. Relying on multidimensional projection and mixed integer optimization, our approach arranges geometric objects in the visual space so as to generate well structured layouts that preserve the semantic relation among objects while still making an efficient use of display area. Moreover, scalability is handled through a hierarchical representation scheme combined with navigation tools. A comprehensive set of quantitative comparisons against existing geometry-based layouts and applications on text, image, and video data set visualization prove the effectiveness of our approach.

5.
PLoS Biol ; 13(11): e1002297, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26569116

RESUMO

The remarkable maneuverability of flying animals results from precise movements of their highly specialized wings. Bats have evolved an impressive capacity to control their flight, in large part due to their ability to modulate wing shape, area, and angle of attack through many independently controlled joints. Bat wings, however, also contain many bones and relatively large muscles, and thus the ratio of bats' wing mass to their body mass is larger than it is for all other extant flyers. Although the inertia in bat wings would typically be associated with decreased aerial maneuverability, we show that bat maneuvers challenge this notion. We use a model-based tracking algorithm to measure the wing and body kinematics of bats performing complex aerial rotations. Using a minimal model of a bat with only six degrees of kinematic freedom, we show that bats can perform body rolls by selectively retracting one wing during the flapping cycle. We also show that this maneuver does not rely on aerodynamic forces, and furthermore that a fruit fly, with nearly massless wings, would not exhibit this effect. Similar results are shown for a pitching maneuver. Finally, we combine high-resolution kinematics of wing and body movements during landing and falling maneuvers with a 52-degree-of-freedom dynamical model of a bat to show that modulation of wing inertia plays the dominant role in reorienting the bat during landing and falling maneuvers, with minimal contribution from aerodynamic forces. Bats can, therefore, use their wings as multifunctional organs, capable of sophisticated aerodynamic and inertial dynamics not previously observed in other flying animals. This may also have implications for the control of aerial robotic vehicles.


Assuntos
Comportamento Animal , Quirópteros/fisiologia , Voo Animal , Modelos Anatômicos , Asas de Animais/fisiologia , Algoritmos , Animais , Fenômenos Biomecânicos , Peso Corporal , Imageamento Tridimensional , Tamanho do Órgão , Reprodutibilidade dos Testes , Especificidade da Espécie , Gravação em Vídeo , Asas de Animais/anatomia & histologia
6.
IEEE Comput Graph Appl ; 32(4): 88-94, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24806636

RESUMO

As an introduction to the field, this article shows how to formulate several geometry-processing operations to solve systems of equations in the "least-squares" sense. The equations are derived from local geometric relations using elementary concepts from analytic geometry, such as points, lines, planes, vectors, and polygons. Simple and useful tools for interactive polygon mesh editing result from the most basic descent strategies to solve these optimization problems. Throughout the article, the author develops the mathematical formulations incrementally, keeping in mind that the objective is to implement simple software for interactive editing applications that works well in practice. Readers can implement higher-performance versions of these algorithms by replacing the simple solvers proposed here with more advanced ones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...