Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 286(1896): 20182444, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30963934

RESUMO

Light has been demonstrated to enhance calcification rates in hermatypic coral species. To date, it remains unresolved whether calcifying epithelia change their ion transport activity during illumination, and whether such a process is mediated by the endosymbiotic algae or can be controlled by the coral host itself. Using a modified Ussing chamber in combination with H+ sensitive microelectrode measurements, the present work demonstrates that light triggers the generation of a skeleton positive potential of up to 0.9 mV in the hermatypic coral Stylophora pistillata. This potential is generated by a net flux of cations towards the skeleton and reaches its maximum at blue (450 nm) light. The effects of pharmacological inhibitors targeting photosynthesis 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and anion transport 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) were investigated by pH microelectrode measurements in coral tissues demonstrating a rapid decrease in tissue pH under illumination. However, these inhibitors showed no effect on the electrophysiological light response of the coral host. By contrast, metabolic inhibition by cyanide and deoxyglucose reversibly inhibited the light-induced cation flux towards the skeleton. These results suggest that ion transport across coral epithelia is directly triggered by blue light, independent of photosynthetic activity of algal endosymbionts. Measurements of this very specific and quantifiable physiological response can provide parameters to identify photoreception mechanisms and will help to broaden our understanding of the mechanistic link between light stimulation and epithelial ion transport, potentially relevant for calcification in hermatypic corals.


Assuntos
Antozoários/efeitos da radiação , Cátions/metabolismo , Transporte de Íons/efeitos da radiação , Luz , Animais , Antozoários/crescimento & desenvolvimento , Antozoários/metabolismo , Calcificação Fisiológica , Cátions/efeitos da radiação , Fenômenos Eletrofisiológicos
2.
J Phycol ; 44(1): 91-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27041045

RESUMO

A wide range of bicarbonate concentrations was used to monitor the kinetics of bicarbonate (HCO3 (-) ) use in both photosynthesis and calcification in two reef-building corals, Porites porites and Acropora sp. Experiments carried out close to the P. porites collection site in Barbados showed that additions of NaHCO3 to synthetic seawater proportionally increased the calcification rate of this coral until the concentration exceeded three times that of seawater (6 mM). Photosynthetic rates were also stimulated by HCO3 (-) addition, but these became saturated at a lower concentration (4 mM). Similar experiments on aquarium-acclimated colonies of Indo-Pacific Acropora sp. showed that calcification and photosynthesis in this coral were enhanced to an even greater extent than P. porites, with calcification continuing to increase above 8 mM HCO3 (-) , and photosynthesis saturating at 6 mM. Calcification rates of Acropora sp. were also monitored in the dark, and, although these were lower than in the light for a given HCO3 (-) concentration, they still increased dramatically with HCO3 (-) addition, showing that calcification in this coral is light stimulated but not light dependent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...