Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 28(12): 17320-17333, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32679942

RESUMO

This work presents the design and characterization of an approach for areal surface profilometry with sub-nm axial resolution. The developed approach is based on a low-coherence interferometer enhanced by an dispersive element to control the axial resolution and measurement range. Optical path differences are detected by an imaging spectrometer where equalization wavelengths are determined as a basis for fitting spectra. This enables the acquisition of surface profiles with a length of up to 1.5 mm without mechanical scanning where a minimal resolution of 0.1 nm in an axial measurement range of nearly 80 µm was achieved. The resolution calculation was based on the standard deviation of measured feature heights. In addition to the system design, its capabilities are demonstrated on samples such as height standards.

2.
Sensors (Basel) ; 19(5)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866475

RESUMO

A method to characterize cross-linking differences in polymers such as waveguide polymers has been developed. The method is based on the scan-free information acquisition utilizing a low-coherence interferometer in conjunction with an imaging spectrometer. By the introduction of a novel analyzing algorithm, the recorded spectral-phase data was interpreted as wavelength-dependent optical thickness which is matchable with the refractive index and therefore with the degree of cross-linking. In the course of this work, the method was described in its hardware and algorithmic implementation as well as in its accuracy. Comparative measurements and error estimations showed an accuracy in the range of 10-6 in terms of the refractive index. Finally, photo-lithographically produced samples with laterally defined cross-linking differences have been characterized. It could be shown, that differences in the optical thickness of ±1.5 µm are distinguishable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...